Rewriting IS data analysis

Stephan C. Buchert (scb@irfu.se)

Swedish Institute of Space Physics, Uppsala

12th EISCAT_3D User Meeting 2021-03-05, Online

E3D data analysis

Serial operation schematic diagram

- E3D: many beams, tristatic volume scattering, ...
 - $\sim 100-1000$ more data to analyse!
- Moore's law seems not valid since ~ 2005:

way to go: parallel computing (?)first practical steps:

The main Special Function for IS analysis

Numerical calculation of the IS spectrum for Maxwellian distributions rests on either

 the plasma dispersion function, code name friedconte(z): B.D. Fried, S.D. Conte, The plasma dispersion function. New York Academic Press, 1961.

complex error function erfc(z):

$$\texttt{friedconte}(z) = i \sqrt{\pi} \exp\left(-z^2\right) \left(1 + \texttt{erfc}(iz)\right)$$
 (1)

the Faddeeva function

$$faddeeva(z) = \exp(-z^2) \operatorname{erfc}(-iz)$$
 (2)

the Dawson integral

$$D(x) = \exp(-x^2) \int_0^x t^2 dt$$
 (3)

Any one of the four functions needs to be evaluated (zillions of times).

Fried-Conte

SUBROUTINE PLASMA C*THIS ROUTINE COMPUTES THE COMPLEX PLASMA DISPERSION FUNCTION C GIVEN BY: С Z(S)=I*SQRT(PIE)*EXPC(-S**2)*(1.+ERFC(I*S) C WHERE: C I=SQRT(-1.) ; S=X+I*Y=COMPLEX ARGUMENT C FOR ABS(Y).GT.1.0. THE CONTINUED FRACTION EXPANSION GIVEN BY FRIED C AND CONTE (1961) IS USED; WHILE FOR ABS(Y).LE.1.0, THE FOLLOWING C DIFFERENTIAL EQUATION IS SOLVED: D Z(S) С С ----- = -2.*(1.+S*Z(S))С DS C SUBJECT TO Z(0)=I*SORT(PIE) С С "F(K)"=TRUE FREQUENCY. C "X(K)"=NORMALIZED FREQUENCY. C "SCALEF"=FREQUENCY SCALING FACTOR FOR NORMALIZATION. _____ C BY WES SWARTZ

Solving the diff. equation is not easy to parallelize :-(

The shortest code

Reference:

 J.A.C. Weideman, "Computation of the Complex Error Function," SIAM J. Numerical Analysis, pp. 1497-1518, No. 5, Vol. 31, Oct., 1994 Available Online: http://www.jstor.org/stable/2158232

- ▶ evaluates at each frequency (polyval) → can be done in parallel;
- not very fast,
- N = 16 gives ~ 12 significnat digits
- probably more than good enough for IS radar.

The State of the Art

🖟 JuliaMath / openspecfun												
⇔ Code	③ Issues ④	17. Pull requests	 Actions 	Projects	🖽 Wiki	③ Security	i∠ Insights					
		P master +	P 3 branches	🛇 🛢 tags			Go to file Add file *	± Code →				
		🔮 ViralBShah	Merge pull reque	st #52 from gingg	s/patch-1 🚃		26649c3 on Jun 30, 2018	39 commits				

This function combines a few different ideas.

First,	for $x > 5$	0, it uses	a continued-fraction expansion (same as	
for the	e Faddeeva	function,	but with algebraic simplifications for z=	(*x).

Second, for θ <= x <= 50, it uses Chebyshev polynomial approximations, but with two twists:

- a) It maps x to y = 4 / (4+x) in [0,1]. This simple transformation, inspired by a similar transformation in the octave-forge/specfun erfox by Soren Hauberg, results in much faster Chebyshev convergence than other simple transformations I have examined.
- b) Instead of using a single Chekyshev polynomial for the entire [0,1] y interval, we break the interval up into 1000 equal subintervals, with a suitch/lookup table, and use much lower degree Chekyshev polynomials in each subinterval. This greatly improves performance in my tests.

- fast and very accurate according to a review;
- accessible from, e.g., Python via SciPy
- written by Steven G. Johnson, MIT, in C/C++ (2012)
- (co-authored FFTW, "photonic crystals")
- involved in the Julia programming language

www.julialang.org

Fast

Julia was designed from the beginning for high performance. Julia programs compile to efficient native code for multiple platforms via LLVM.

- generally reaches the speed of C/C++/Fortran code
- without the need to actually program at this "low level";
- easy to access
 C/C++/Fortran libraries
 (compared to Matlab Mex);
- easy to make use multi-core CPUs, SIMD, and AVX2/AVX512;
- also NVidia GPU (no hassle for me).
- can run in a Jupyther environment (IJulia, not tested by me).

IS data analysis in Julia

- uses multicore for loop over Fadeeva frequencies
- multicore speedup 2–3 (on 12 core i7 laptop)
- but GPU not used (C++ function);
- Fourier transform Spectrum
 ACF:
- implemented as matrix multiplication ~ 256x32
- that seems to happen in the GPU without hassle.
- still a long way to go...