Radar Measurements and the Volumetric Electric Field

Stephan C. Buchert (scb@irfu.se)

Swedish Institute of Space Physics, Uppsala

13th EISCAT_3D User Meeting 2021-06-15, Online

Magnetosphere-Ionosphere Coupling Equation

By Kristian Birkeland - Scanned by Ian Tresman from The Norwegian Aurora Polaris Expedition 1902-1903

By Le, G., J. A. Slavin, and R. J. Strangeway (2009), JGR, doi:10.1029/2009JA014979

- lonospheric Ohm's law for perpendicular currents \vec{J}_{\perp} .
- Birkeland j_{\parallel} by current continuity

$$\dot{J}_{\parallel} = -
abla \cdot \left(\Sigma_P \vec{E}_{\perp} + \Sigma_H \hat{\vec{b}} \times \vec{E}_{\perp}
ight) \quad (1)$$

Ē electric field

j∥

- Σ_P Pedersen conductance
- Σн Hall conductance $\hat{\vec{b}}$
 - unit vector along \vec{B}
 - field-aligned current

Magnetosphere-Ionosphere Coupling

First use of (1) with experimental data by Kamide, Richmond, and Matsushita (KRM, 1981): Estimation of ionospheric electric fields, ionospheric currents, and field-aligned currents from ground magnetic records, JGR. With *E*_⊥ = −Φ

$$j_{\parallel} = \Sigma_P \nabla^2 \Phi + \nabla \Sigma_P \cdot \nabla \Phi + \nabla \Sigma_H \cdot \hat{\vec{b}} \times \nabla \Phi$$
(2)

a solve for \vec{E}_{\perp} for estimated j_{\parallel} .

 basis for AMIE¹ procedure which can use several data sources (here SuperDARN)

Matsuo, T. (2019), ISSI

¹ Assimilative Mapping of Ionospheric Electrodynamics

$\Omega\text{-}\mathsf{bands}$ with <code>EISCAT</code>

Buchert et al. (1990)

- can be scanned with the UHF in the north-south direction,
- they convect east-west;
- with tri-static IS we can estimate both \vec{E}_{\perp} and $\Sigma_{P,H}$;
- this should work much better with E3D!
- but what else should we consider/need to think about?

Assumptions

- ▶ \vec{B} is vertical (to get j_{\parallel} from equivalent currents): $j_{\parallel} \rightarrow j_{\parallel} \cos \chi$, χ magnetic co-inclination (except near the equator)
- neutral wind $\vec{u}_n = 0$;
- Corrected Ohm's law/MI coupling:

$$j_{\parallel} = -\nabla \cdot \left(\Sigma_{P} \left(\vec{E}_{\perp} + \vec{u}_{n} \times \vec{B} \right) + \Sigma_{H} \hat{\vec{b}} \times \left(\vec{E}_{\perp} + \vec{u}_{n} \times \vec{B} \right) \right)$$
(3)

▶ $\vec{E}_{\perp} + \vec{u}_n \times \vec{B}$ is the electric field in the local neutral reference frame

Problem:

- ► E3D measures neither \vec{E}_{\perp} nor \vec{u}_n , only the ion velocity \vec{v}_i (in an Earth-fixed frame)
- ▶ satellites: DE-2 measured \vec{E}_{\perp} , 1 component, and \vec{u}_n ;
- Demeter measured \vec{E}_{\perp} , both at high altitudes.

Solution

Ion force balance (steady-state momentum equation):

$$e\left(\vec{E}+\vec{v}_{i}\times\vec{B}\right)=m_{i}\nu_{in}\left(\vec{v}_{i}-\vec{u}_{n}\right) \tag{4}$$

- which becomes $\vec{E} = -\vec{v}_i \times \vec{B}$ for $\nu_{in} \ll eB/m_i$,
- so obtain *E*_⊥ from *v*_i data at altitudes higher than ~ 180 km.
 assume equipotential fieldlines and estimate

$$\vec{u}_n = \vec{v}_i - \frac{\Omega_i}{\nu_{in}} \left(\vec{E}_\perp / B + \vec{v}_i \times \hat{\vec{b}} \right)$$
(5)

the method has been used with EISCAT_1D in several studies: Nozawa and Brekke, 1995, 1999; Heinselman and Nicolls, 2008; Nygrén et al., 2011; ...

Example with E3D

- assume a zonal wind with latitudinal dependence, e.g. a jet-like increase
- does the magnetosphere adjust to this forcing by the thermosphere?
 - yes: also the ion drift in the F region and upward need to show the latitudinal structure mapped upward;
 - ▶ no: ion drift and neutral wind structure differ, $\vec{E}_{\perp} \neq 0$ in the neutral frame, FACs, $j \times B$ force, Poynting flux ...

Summary

- magnetosphere-ionosphere-thermosphere coupling is an interesting subject to be studied with E3D,
- with a promise for fresh views and ideas;
- care must be taken when applying Ohm's law in the 3-d ionosphere,
- \blacktriangleright \vec{E} in the local neutral frame is relevant;
- while mapping of the electric potential has to be done in a constant reference frame;
- even when E3D does not directly measure \vec{E} ,
- established methods can be extended and combined to estimate both \vec{E} and \vec{u}_n .