

PHASES OF AN ESA HARDWARE PROJECT EXPLAINED

(What is it that the engineers are up to really?)

Vicki Cripps, 2018-05-23

Overview

- European standards system ECSS
- Phases of a project, including reviews
- Requirements and their verification
- Hardware models
- Qualification and acceptance testing
- Problems along the way

- ECSS European Cooperation for Space Standardisation
- ecss.nl
- Members: Italian, German, French, British, Dutch, and Norwegian Space Agencies; ESA; Eurospace (industry)
- Associate member Canadian Space Agency
- 127 standards and 52 handbooks on management, engineering, product assurance, and sustainability (space debris)
- Not to be confused with ESCC, European Space Components Coordination, specification system for space qualified electronics components

Activities	Phases								
	Phase 0	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F		
Mission/Function		MDR	PRR						
Requirements			↓ ^{SRR}	PDR					
Definition					CDR				
Verification					₽QR				
Production						AR ORR FRR			
Utilization							ELR		
Disposal							MCR		

Project phases: 0 and A

- Phase 0: Mission Definition
 - Identify the mission needs, science performance goals, safety and operations constraints
 - Create initial technical requirements specification
 - Finished after the Mission Definition Review (MDR)
- Phase A: Mission Feasibility
 - Production of initial technical designs, management plan, system engineering plan, product assurance plan
 - Assess feasibility implementation, programmatic, cost, operations, organisation, production, maintenance, disposal, etc.
 - Assess risks
 - Release final technical requirements specification
 - Finished after the Preliminary Requirements Review (PRR)

Requirements and compliance

- Requirement writing is a skill! Requirements should be:
 - understandable, readable independently, and unambiguous
 - verifiable (can be demonstrated)
- Listed in the Experiment Interface Document Part A (EID-A), largely derived from ECSS
 - For JUICE, we (now) have 1287 requirements to follow
 - Plus 10+ other 'sub'-requirements documents (science, Airbus)
- Response from the instruments via the EID-B (and matrix)
 - State if compliant, non-compliant, partially compliant or not applicable, with justification
 - Where non- or partially compliant, write a Request for Deviation explaining why, which must be approved by ESA and the Prime
 - List our requirements towards the spacecraft or other instruments

• A good JUICE requirement:

The PI shall ensure that the unit identification code is composed of the following three parts:

- 3 to 4 characters for instrument identification, (e.g. RPWI)
- 3 characters for unit identification, (e.g. Digital Processing Unit, DPU)
- 2 characters for model identification (ST for Structural Thermal Model, EM for Engineering Model, QM for Qualification Model, FM for Flight Model, FS for Flight Spare Model, PF for Proto-flight Model)
- *PTI [Product Tree Identification] number (to be provided by Spacecraft Prime).*

• A bad JUICE requirement:

Appropriate provisions for their control shall be defined for facilities and procedures, and their implementation shall be verified.

Requirement verification

- Verification methods
 - Test ('Test is best')
 - Inspection
 - Analysis
 - Review of design (check the drawings, or written documentation)
- Verification levels
 - Spacecraft level
 - System level (= instrument level, RPWI for JUICE)
 - Unit level (e.g. electronics box: EBOX)
 - Sub-unit level (e.g. HF circuit board within the EBOX)
- One requirement can have several verifications at different levels – all need to be documented (now using OpenProject)

Activities	Phases								
	Phase 0	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F		
Mission/Function		MDR	PRR						
Requirements			↓ ^{SRR}	PDR					
Definition					CDR				
Verification					₽QR				
Production						AR ORR FRR			
Utilization							ELR		
Disposal							MCR		

- Phase B Preliminary Definition
 - Finalise plans, decide on hardware models, define schedule
 - Trade-off studies to decide on preferred solutions
 - Develop design, start procurement of long-lead items (some electronic components have lead times of over 1 year)
 - Spacecraft side Systems Requirements Review
 - Finished after the Preliminary Design Review (PDR)
- Review process (over 2-3 months)
 - Deliver the datapack
 - Receive Review Item Discrepancies (RIDs) comments and questions to answer in advance
 - Have a 'colocation' meeting, decide on resulting actions
 - For JUICE we issued over 120 documents and models for PDR, and received 241 RIDs

Problems so far - the 'Prime' schedule

- The 'Prime' the industry contactor responsible for the spacecraft and all its sub-systems
 - ESA's new way of thinking in Phase A, have two!
 - For JUICE: Airbus (Astrium) vs. Thales Alenia Space
 - For THOR: Airbus vs. OHB
 - Reviews and meetings duplicated to respect confidentiality
 - Selection made at the end of Phase A
 - Once selected, tender process begins for all the sub-contractors
 - SRR in Phase B 'paperwork' exercise, only after this that the real engineering work begins
 - By the end of Phase B, the instrument designs should be relatively mature (for THOR, significant detail was expected during Phase A)
 - Requirements for the instruments should be fixed, but the Prime hasn't really started yet

Activities	Phases								
	Phase 0	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F		
Mission/Function		MDR	PRR						
Requirements			↓ ^{SRR}	PDR					
Definition					CDR				
Verification					₽QR				
Production						AR ORR FRR			
Utilization							ELR		
Disposal							MCR		

Phase C

- Phase C Detailed Definition
 - Finalise the design
 - Detailed definition of interfaces
 - Build engineering models
 - Development testing
 - Planning for assembly, integration, verification and testing (AIV/T)
 - Start writing the User Manual
 - Finished after the Critical Design Review (CDR)
- For JUICE, CDR datapack delivery 15th June
- CDR process has been running since November 2017 at unit level

Hardware Models

Model	Representativeness
Breadboard (BBM)	Test model, cheap, partial models
Engineering (EM)	Close to the flight, cheaper parts, less functionality
Structural – Thermal (STM)	Same mass and power dissipation
Qualification (QM)	Identical to flight
Flight (FM)	Full functionality, qualified parts, materials and processes
Spare (FS)	Identical to flight / spares kit
Protoflight (PFM)	Full functionality, qualified parts, materials and processes
Engineering Qualification (EQM)	Close to flight, cheaper parts, full functionality

JUICE EM EBOX

Typical test programme

Physical	Structural	Thermal	Electrical
Visual inspection	Shock*	Thermal vacuum	Functional and performance
Dimensions check	Sine vibration	Thermal balance	Calibration
Physical properties	Random vibration		Grounding, bonding and isolation
Deployment			EMC
Strip-down inspection			ESD*
			Magnetic cleanliness

* Can be destructive

Test levels and durations

- Acceptance tests
 - Want to check the hardware can survive but still function fully
 - Don't want to break anything
 - E.g. thermal vacuum tests:
 - Maximum design temp + 5°C
 - Minimum design temp 5°C
 - 4 cycles
- Qualification tests
 - Want to stress the hardware
 - It doesn't matter as much if it breaks
 - E.g. thermal vacuum tests:
 - Maximum acceptance temp + 5°C
 - Minimum acceptance temp 5°C
 - 8 cycles

Hardware model testing

Model	Main use	Qualification test levels	Acceptance test levels
Breadboard (BBM)	Development testing	No	No
Engineering (EM)	Test as much as you can	No	No
Structural – thermal (STM)	Confirm mechanical and thermal analysis	Yes	No
Qualification (QM)	Check design survives	Yes	No
Flight (FM)	Go to space ©	No	Yes
Spare (FS)	Reserve	No	Yes
Protoflight (PFM) Go to space with more risk		Qualification level acceptance duration	s and ions (usually)
Engineering Qualification (EQM)	Check design survives (cheaper and quicker)	Yes	No

Solar Orbiter – RPW BIAS FM (top)

- Forced to change plans
- Solar Orbiter:
 - 8 models in total
 - 5 variants of EM, including 'EM+' and 'pre-EQM'
 - No vibration test done before the flight Main Electronics Box
- JUICE:
 - Electronic components delayed
 - Change from QM / FM approach to PFM for many units
 - STM EBOX will not be tested before we have to give the goahead to start the PFM manufacturing
- Rosetta
 - Which model is actually flying?

Activities	Phases								
	Phase 0	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F		
Mission/Function		MDR	PRR						
Requirements			↓ ^{SRR}	PDR					
Definition					CDR				
Verification					₽QR				
Production						AR ORR FRR			
Utilization							ELR		
Disposal							MCR		

Phase D

- Phase D Qualification / verification and production
 - Build qualification hardware
 - Complete qualification testing and verification activities
 - Hold Qualification Review (QR)
 - Build flight hardware
 - Complete acceptance testing and authorise delivery
 - Finished after the Flight Acceptance Review (FAR) and Operational Readiness Review (ORR)
- Extra reviews!
 - Manufacturing Readiness Review (MRR)
 - Test Specification Review (TSR)
 - Test Readiness Review (TRR)
 - Post Test Review (PTR)
 - Delivery Review Board (DRB)

- Qualification
 - Qualify at the lowest level possible
 - Purchase space-qualified components and materials (long lead time, expensive)
 - Testing of individual samples and assemblies
 - Processes e.g. soldering
 - Often overlaps with building the flight hardware
 - Accept the risk and hope for the best!
- System designed for industry
 - Extremely manpower heavy
 - Reviews are payment milestones
 - Changes cost money
 - Can be difficult to talk to the right person
 - (Anyone want to / can help on JUICE!?)

Activities	Phases								
	Phase 0	Phase A	Phase B	Phase C	Phase D	Phase E	Phase F		
Mission/Function		MDR	PRR						
Requirements			↓ ^{SRR}	PDR					
Definition					CDR				
Verification					₽QR				
Production						AR ORR FRR			
Utilization							ELR		
Disposal							MCR		

- Phase E Operations and utilisation
 - Flight Readiness Review (FRR)
 - Launch Readiness Review (LRR) and launch
 - Commissioning and Commissioning Result Review (CRR)
 - Operation
 - Ground segment activities
 - Finished after End of Life Review (ELR)
- Phase F Disposal
 - Finished after Mission Close-out Review (MCR)

JUICE Christmas tree

Thank you

Questions