Large-amplitude high-frequency waves at Earth's magnetopause

D. B. Graham, +IRFU, +MMS

[Graham, D. B., Vaivads, A., Khotyaintsev, Yu. V., Andre, M., et al. (2018). Largeamplitude high-frequency waves at Earth's magnetopause. Journal of Geophysical Research: Space Physics, 123.<u>https://doi.org/10.1002/2017JA025034]</u>

Outline

- Background and motivation
- Theory
- Wave observations
- Statistical results
- Conclusions

Background and motivation

• Langmuir ($k_{\parallel} >> k_{\perp}$) and/or upper hybrid ($k_{\parallel} << k_{\perp}$) waves have been reported at Earth's magnetopause. [e.g., Gurnett et al., 1978; Anderson et al., 1982]

Waves at the magnetopause

2007-04-17 UTC

Magnetic reconnection

• Waves are generated by an agyrotropic electron beam.

[Graham et al., 2017]

 Plasma frequency waves generated near a reconnection electron diffusion region.

Radio emission

• Type II and type III radio bursts (Wind data).

2017 July 14

Langmuir/UH dispersion surface

• Single electron Maxwellian distribution.

Langmuir/UH dispersion surface

Hot and cold electron Maxwellian distributions

L-O surface

R-X surface

Electron Bernstein waves

 In addition to the three dispersion surfaces near f_{pe}, electron Bernstein waves can develop between f_{ce} harmonics.

MMS data

- We search through high-resolution electric field data for largeamplitude waves near fpe (Emax > 20 mV m⁻¹).
- From MMS magnetopause phases we find 8837 wave events (most near the MP, some near the foreshock).

Langmuir waves (1)

Langmuir waves (2)

 Three examples of Langmuir waves

Very narrow spectral peak and Bernstein waves.

Broader spectral peak Langmuir waves.

Broad spectral peak Langmuir waves and whistler waves.

[cf., Reinleitner et al.1982]

UH waves (1)

- $E_{\parallel} \ll E_{\perp}$.
- UH waves are can be simultaneously observed with Bernstein waves and whistlers.

UH waves (2)

- $E_{\parallel} \ll E_{\perp}$.
- UH waves are can be simultaneously observed with Bernstein waves and whistlers.

Electromagnetic properties

Wave locations

Wave properties (1)

Wave properties (2)

f_{pk} - frequency of peak power.

 UH waves are more likely to be found than Langmuir waves at the magnetopause.

Comparison with kinetic theory

Case 1: Single Maxwellian - using measured parameters
Case 2: Hot and Cold Maxwellians - measured B and n.

We assume f_{pk} occurs where $v_g = 0$.

- Case 1 waves do not agree well with observations.
- Case 2 agrees well with observations.

Wave properties (3)

 $(f_{pk}-f_{uh})/f_{uh}$

Comparison with kinetic theory

- Case 1: Single Maxwellian
- Case 2: Hot and Cold Maxwellians

Example 1

Example 2

Electromagnetic properties

Comparison with kinetic theory

- Case 1: Single Maxwellian
- Case 2: Hot and Cold Maxwellians

 EM properties are consistent with UH waves rather than Bernstein waves.

Conclusions

- Large-amplitude Langmuir and UH waves are frequently observed at Earth's magnetopause.
- The electrostatic and electromagnetic properties of the waves are consistent with kinetic theory.