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 Electron Kinetic Processes 
in the Solar Wind 



Kinetic properties of corona and wind 

Problem:  Thermodynamics and transport…. 

• Plasma is multi-component and non-uniform 

→ multiple scales and complexity 
 

• Plasma is tenuous and turbulent 
 

→ free energy for microinstabilities  
→ strong wave-particle interactions (diffusion)  
→ weak collisions (Fokker-Planck operator) 
→ strong deviations from local thermal equilibrium  
→ global boundaries are reflected locally 
→ suprathermal particles 



Collisional fluid versus exosphere 

Pierrard et al., JGR, 2004 

Total energy and 
magnetic moment are 
conserved: 

∆V ≅ 3 kV 



Kinetic Vlasov-Boltzmann theory 

 Description of particle velocity distribution function in phase space: 

Relative velocity w,       
mean velocity u(x,t), 
gyrofrequency Ω, electric 
field E' in moving frame:  

Convective derivative: 

Moments: Drift 
velocity, pressure 
(stress) tensor, 
heat flux vector 

Dum, 1990 



Collisions and plasma turbulence 
Coulomb collisions and wave-particle interactions can be represented 
by a second-order differential operator, including the acceleration 
vector A(v) and diffusion tensor D(v), in velocity space: 

Parameter Chromo 
-sphere 

Corona 
(1RS) 

Solar 
wind 
(1AU) 

 ne (cm-3) 1010 107 10 

 Te (K) 6-10 103 1-2 106 105 

 λe (km) 10 1000 107  
 

 

   Collisional kinetics of 
solar wind electrons: 

  - Pierrard et al. 
  - Lie-Svendsen et al. 
   



Collisions and 
geometry 

Philipps and Gosling, JGR, 1989 

Double adiabatic invariance, 
→  extreme anisotropy is not 
observed! 

Spiral reduces anisotropy! 

Adiabatic collision-dominated 
→  isotropy,  is not observed! 



Plasma waves and frequencies 

 Electrostatic                 (Debye length, λDj ~ 2π/kj ~ 1m )   
  - Langmuir and ion-acoustic:   ωj = kjVj ; Vj = (kBTj/mj)1/2 

  
 Electromagnetic          (Gyroradius, rj ~ Vj /Ωj ~ 100km) 
  - Whistler and lower-hybrid:     Ωe , (ΩeΩi)1/2 

  - Alfvén and ion-cyclotron:       Ωp , Ωα ;  Ωi = eiB/mic  
  - Fast-mode and magneto-acoustic:  Ωj = kAjVA 
 

Inside 1 AU these frequencies range from 10 Hz up to 100 MHz. 
 
 Gyrokinetic scale:   Ωj = KjVsw ;  at boundaries and ion pick-up 
 Doppler shift:           ω' = ω + kVsw ;  in supersonic wind 

 

Solar Orbiter will measure the full electromagnetic 
(vector) fields and their fluctations. 



Electron energy 
spectrum 

Feldman et al., JGR, 80, 4181, 1975 

Two populations: 

• Core (96%) 

• Halo (4%) 

IMP 
spacecraft 

Core: local, collisional, 
bound by interplanetary 
electrostatic potential 

Halo: global, collisionless, 
free to escape (exospheric) 



Electron velocity distributions 

Pilipp et al., JGR, 
92, 1075, 1987 

             high               intermediate speed              low 

Core (96%), halo (4%) electrons, and „strahl“ 

Te = 1-2 
105 K 

Helios 



Bi-directional electron 
heatfluxes and rare He+ 

Strahl electrons 

Flux rope 

Magnetic bottle 

Plasmoid, 
magnetic cloud 

Open field lines 

H+ 

He2+ 

He+ 

Schwenn et 
al., 1970 

Helios 

ICME 

• Palmer et al., 1978, Solar energetic electrons indicate bottle 

• Kutchko et al., 1982, Bi-dir. ions and trapped electrons in loop 

• Pillipp et al., 1987,  Double-strahl solar-wind electrons in loop 

• Gosling et al., 1987, Bi-dir. suprathermal electrons in cloud 

Bi-directional 
electrons 



Invalidity of classical transport theory 

Sun 

• Strong heat flux tail: Strahl  

• Collisional free path λc much 
larger than temperature-
gradient scale L 

• Polynomial expansion about 
a local Maxwellian hardly 
converges, as λc >> L 

Pilipp et al., JGR, 92, 1075, 1987 

solar wind 
electrons 

ne = 3-10 cm-3,  

Te = 1-2 105 K at 1 AU 



Solar wind electrons: Core-halo evolution 

Maksimovic et al., JGR, 2005 

Normalized core remains constant 
while halo is relatively increasing. 

Halo is relatively increasing 
while strahl is diminishing. 

Helios 
Wind 
Ulysses 

0.3-0.41 AU 

1.35-1.5 
AU 

Scattering by meso-scale magnetic structures 



Coulomb collisions and electrons 

Lie-Svendson et al., 
JGR, 102, 4701, 1997 

Integration of the 
full Fokker-Planck 
equation 

 

• Velocity filtration is 
weak 

• Strahl formation by 
escape electrons 

• Core bound by 
electric field 

55 Rs 

30 Rs 

Escape 
speed 

Speed / 10000 km/s 



Collisional core – runaway strahl 

Smith, Marsch, Helander, ApJ, 751, 2012 Heat flux smaller than classical 

Collisional transport in corona  
with Fokker-Planck operator in  
Boltzmann equation with  
self-consistent electric field 



Wave-particle interactions 
Dispersion relation using measured or model distribution functions f(v), 
e.g. for electrostatic waves: 

εL(k,ω) = 0  →  ω(k) = ωr(k) + iγ(k)  
Dielectric constant is functional of f(v), which may when being non-
Maxwellian contain free energy for wave excitation. 
 

γ(k) > 0 →  micro-instability...... 
Resonant particles:   
ω(k) - k·v = 0         (Landau resonance) 
ω(k) - k·v = ± Ωj    (cyclotron resonance) 

→  Energy and momentum exchange between waves 
and particles. Quasi-linear or non-linear relaxation..... 



Electron heat conduction 

McComas et al., GRL, 19, 1291, 1992 Qe ≠ - κ∇ Te 

Heat carried by 
halo electrons! 

TH = 7 TC  

 

Interplanetary 
potential: 

Φ = 50-100 eV 

E = - 1/ne ∇ pe 



Whistler 
regulation of 

electron 
heat flux 

• Halo electrons 
carry heat flux  

• Heat flux varies 
with B or VA 

• Whistler 
instability 
regulates drift 

Sime et al., JGR, 1994 



Suprathermal coronal electrons caused by 
wave-particle interactions I 

Vocks and Mann, Ap. 
J., 593, 1134, 2003 

Boltzmann 
equation with 
waves and 
collisions 

A(s) flux tube 
area function  

Electron pitch-angle 
scattering in the 
whistler wave field 

Normalized phase 
speed vA,e/c in the 
solar corona 



Suprathermal coronal electrons caused by 
wave-particle interactions II 

Vocks and Mann, Ap. J., 593, 1134, 2003 

s= 0.014 Rs 

s= 6.5 Rs 

Focusing 
-> strahl 

Pitch-angle scattering 
-> shell formation 



Conclusions 
 Solar wind electron velocity distributions are shaped 

generally by large-scale forces (e.g., gravity, magnetic 
mirror force), Coulomb collisions and resonant 
interactions with high-frequency plasma waves.  

 The core electrons are formed mainly by gravity and the 
interplanetary potential and isotropised by Coulomb 
collisions. 

 The strahl electrons are free (they can climb the 
interplanetary potential) collisional run-away particles 
that strongly focus along the magnetic field. 

 Collisional transport is non-classical and less effective 
than transport according to Braginskii’s theory. 

 Diffusion implies inelastic scattering of electrons by ion 
acoustic and whistler mode waves, and thus leads to 
turbulence dissipation at the electron kinetic scales. 
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