Kinetic processes and wave-particle interactions in the solar wind

Eckart Marsch

Institute for Experimental and Applied Physics (IEAP), Christian Albrechts University at Kiel, 24118 Kiel, Germany

Seminar Talk at Uppsala University, Uppsala, Sweden, November 2013

Ion kinetics in the solar wind

• Prominent kinetic features observed by Helios are the proton beam and the core temperature anisotropy, $T_{c\perp} > T_{c||}$.

• Evidence for pitchangle scattering and quasilinear diffusion, microinstablities and Coulomb collisions

Marsch et al., JGR 1982

Wave-ion kinetic interactions

Beams and temperature anisotropies usually occur in solar wind proton velocity distributions.
They indicate ubiquitous kinetic wave-particle interactions, which involve cyclotron and Landau resonances with plasma waves.
Kinetic instabilities and ion diffusion play key roles in the dissipation of MHD turbulence.

"Kinetic Physics of the Solar Corona and Solar Wind" Living Rev. Solar Phys. **3**, 2006 http://www.livingreviews.org/lrsp-2006-1

Proton core heating and beam formation

Numerical hybrid simulation show:

Beam forms through Landau resonance and anisotropy by resonant pitch-angle diffusion.

Contour plots of the proton VDF in the v_x - v_z plane for the dispersivewave case at four instants of time. The color coding of the contours corresponds, respectively, to 75 (dark red), 50 (red), 10 (yellow) percent of the maximum.

J.A. Araneda, E. Marsch, and A.F. Viñas, Phys. Rev. Lett., 100, 125003, 2008

Kinetic Vlasov-Boltzmann theory

Description of particle velocity distribution function in phase space:

$$\frac{df}{dt} + \mathbf{w} \cdot \frac{\partial f}{\partial \mathbf{x}} + (\mathbf{w} \times \mathbf{\Omega}) \cdot \frac{\partial f}{\partial \mathbf{w}} + \left(-\frac{d}{dt}\mathbf{u} + \frac{q}{m}\mathbf{E}'\right) \cdot \frac{\partial f}{\partial \mathbf{w}} - \frac{\partial \mathbf{u}}{\partial \mathbf{x}} : \mathbf{w}\frac{\partial f}{\partial \mathbf{w}} = \frac{\delta f}{\delta t}$$

Convective derivative:

Relative velocity \mathbf{w} , mean velocity $\mathbf{u}(\mathbf{x},t)$, gyrofrequency Ω , electric field **E'** in moving frame:

Moments: Drift velocity, pressure (stress) tensor, heat flux vector

$$\frac{d}{dt} = \frac{\partial}{\partial t} + \mathbf{u} \cdot \frac{\partial}{\partial \mathbf{x}}$$

$$\mathbf{w} = \mathbf{v} - \mathbf{u}(\mathbf{x}, t), \ \mathbf{\Omega} = \frac{q\mathbf{B}}{mc}, \ \mathbf{E}' = \mathbf{E} + \frac{1}{c}\mathbf{u} \times \mathbf{B}$$

$$\langle \mathbf{w} \rangle = 0, \mathcal{P} = nm \langle \mathbf{ww} \rangle, \mathbf{Q} = nm \langle \mathbf{w}\frac{1}{2}w^2 \rangle$$

 $\mathbf{\Pi} = \mathcal{P} - \mathcal{I}p \quad p = nk_BT = \frac{1}{3}Tr\mathcal{P}$ Dum, 1990

Kinetic properties of corona and wind

- Plasma is multi-component and non-uniform
- \rightarrow multiple scales and complexity
- Plasma is tenuous and turbulent
- \rightarrow free energy for microinstabilities
- \rightarrow strong wave-particle interactions (diffusion)
- \rightarrow weak collisions (Fokker-Planck operator)
- \rightarrow strong deviations from local thermal equilibrium
- \rightarrow global boundaries are reflected locally
- \rightarrow suprathermal particles

Problem: Thermodynamics and transport....

Collisions and plasma turbulence

Coulomb collisions and wave-particle interactions can be represented by a second-order differential operator, including the acceleration vector A(v) and diffusion tensor D(v), in velocity space:

$$\frac{\delta f}{\delta t} = \frac{\partial}{\partial \mathbf{v}} \cdot (-\mathbf{A} + \mathcal{D} \cdot \frac{\partial}{\partial \mathbf{v}})f$$

Parameter	Chromo -sphere	Corona (1R _s)	Solar wind (1AU)
n _e (cm⁻³)	10 ¹⁰	10 ⁷	10
Т _е (К)	6-10 10 ³	1-2 10 ⁶	10 ⁵
λ _e (km)	10	1000	10 ⁷

Collisional kinetics of solar wind electrons:

- Pierrard et al.
- Lie-Svendsen et al.

Quasi-linear pitch-angle diffusion

Diffusion equation

$$\frac{\delta}{\delta t}f_j(v_{||}, v_{\perp}, t) = \int_{-\infty}^{+\infty} \frac{d^3k}{(2\pi)^3} \sum_M \hat{\mathcal{B}}_M(\mathbf{k}) \frac{1}{v_{\perp}} \frac{\partial}{\partial \alpha} \left(\hat{\nu}_{j,M} v_{\perp} \frac{\partial}{\partial \alpha} f_j(v_{||}, v_{\perp}, t) \right)$$

Pitch-angle gradient in wave frame

$$\frac{\partial}{\partial \alpha} = v_{\perp} \frac{\partial}{\partial v_{\parallel}} - \left(v_{\parallel} - \frac{\omega_M(\mathbf{k})}{k_{\parallel}} \right) \frac{\partial}{\partial v_{\perp}}$$

Superposition of linear waves with random phases

 \rightarrow Energy and momentum exchange between waves and particles. Quasi-linear evolution.....

Kennel and Engelmann, 1966; Stix, 1992

Observation of pitch-angle diffusion

Solar wind proton VDF contours are segments of circles centered in the wave frame $(\omega/k \le V_A)$

Velocity-space resonant diffusion caused by the ioncyclotron-wave field

Marsch and Tu, JGR 2001

Ingredients in diffusion equation

$$\hat{\mathcal{B}}_M(\mathbf{k}) = \left(\frac{\mid \mathbf{B}_M(\mathbf{k}) \mid}{B_0}\right)^2 \left(\frac{k_{||}}{k}\right)^2 \frac{1}{1 - \mid \hat{\mathbf{k}} \cdot \mathbf{e}_M(\mathbf{k}) \mid^2}$$

$$V_j(\mathbf{k}, s) = \frac{\omega_M(\mathbf{k}) - s\Omega_j}{k_{\parallel}}, \quad J_s = J_s(\frac{k_{\perp}v_{\perp}}{\Omega_j})$$

Normalized wave spectrum (Fourier amplitude)

Resonant speed, Bessel function of order s

Resonant wave-particle relaxation rate

$$\hat{\nu}_{j,M}(\mathbf{k}, v_{\parallel}, v_{\perp}) = \pi \frac{\Omega_j^2}{k_{\parallel}} \sum_{s=-\infty}^{+\infty} \delta(V_j(\mathbf{k}, s) - v_{\parallel}) \mid \frac{1}{2} (J_{s-1}e_M^+ + J_{s+1}e_M^-) + \frac{v_{\parallel}}{v_{\perp}} J_s e_{Mz} \mid^2$$

Solar wind is weakly collisional, $\Omega_{i,e} >> v_{i,e}$, and strongly magnetized, $r_{i,e} << \lambda_{i,e}$

Marsch, Nonlin. Proc. Geophys. 2002

Ion cyclotron waves

Helios

Jian and Russell, The Astronomy and Astrophysics Decadal Survey, Science White Papers, no. 254, 2009

Parallel in- and outward propagation

STEREO

Jian et al., Ap.J. 2009

Transverse Alfvén/cyclotron waves

Alfvén-ion-cyclotron waves, 0.02 Hz - 2 Hz from Helios at 0.3 AU

Proton anisotropy $(T_{\perp}/T_{\parallel} > 1)$ is strongly correlated with wave power.

Bourouaine et al., GRL 2010

Ion differential motion

The alpha-particle temperature ratio can be explained by the kinetic theory of ion-cyclotron wave dissipation.

Alpha particles are heated by ion-wave interaction as long as they can stay in resonance with the Alfvén/ion-cyclotron waves, a process that occurs when the normalized ion differential speed is small. Resonant interaction with waves becomes less efficient if the differential speed increases, or if the wave energy input is smaller.

Bourouaine et al., ApJ 2011

Spectroscopy of heavy-ion kinetics

- Plasma diagnostics of corona on disk and off limb provides composition and the ion temperature anisotropy.
- Spectroscopy of the solar wind acceleration region by observation of line broadenings (temperatures versus height) of ions with different charge/mass ratios.

(T₁) 108, Temperature (K) 05+ $(\max T_{II})$ 10^{7} Kinetic protons 1061 electrons 2 1 3 4 r / R_{\odot}

UVCS/SOHO

Kohl et al., Ap. J., 1999; Cranmer, 2009.

Semi-kinetic model of wave-ion interaction in the corona

$$F_{j\parallel}(w_{\parallel}) = 2\pi \int_{0}^{\infty} dw_{\perp} w_{\perp} f_{j}(w_{\perp}, w_{\parallel})$$
$$F_{j\perp}(w_{\parallel}) = 2\pi \int_{0}^{\infty} dw_{\perp} w_{\perp} \frac{w_{\perp}^{2}}{2} f_{j}(w_{\perp}, w_{\parallel})$$

 $\int_{-\infty}^{\infty} dw_{\parallel} F_{j\parallel}(w_{\parallel}) \begin{pmatrix} 1 \\ w_{\parallel} \\ w_{\parallel}^2 \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ V_{j\parallel}^2 \end{pmatrix}$ $\int_{-\infty}^{\infty} dw_{\parallel} F_{j\perp}(w_{\parallel}) = V_{j\perp}^2$

Reduced Velocity distributions

$$\frac{\partial F_{\parallel}}{\partial t} + v_{\parallel} \frac{\partial F_{\parallel}}{\partial s} + \left(\frac{q}{m} E_{\parallel} - g(s)\right) \frac{\partial F_{\parallel}}{\partial v_{\parallel}} + \frac{1}{2A(s)} \frac{\partial A(s)}{\partial s} \cdot 2\left(\frac{\partial F_{\perp}}{\partial v_{\parallel}} + v_{\parallel}F_{\parallel}\right) = \frac{\delta F_{\parallel}}{\delta t} + \frac{\delta F_{\parallel}}{\delta t}|_{Coul.}$$

$$\frac{\partial F_{\perp}}{\partial t} + v_{\parallel} \frac{\partial F_{\perp}}{\partial s} + \left(\frac{q}{m} E_{\parallel} - g(s)\right) \frac{\partial F_{\perp}}{\partial v_{\parallel}} + \frac{1}{2A(s)} \frac{\partial A(s)}{\partial s} \cdot 4\left(v_{j\perp}^2 \frac{\partial F_{\perp}}{\partial v_{\parallel}} + v_{\parallel} F_{\perp}\right) = \frac{\delta F_{\perp}}{\delta t} + \frac{\delta F_{\perp}}{\delta t} |_{Coul.}$$

Marsch, Nonlinear Proc. Geophys., 5, 111, 1998

Vocks and Marsch, GRL, 28, 1917, 2001

Velocity distributions of oxygen ions

Vocks & Marsch, Ap. J. 568, 1030, 2002

Marginal stability of coronal oxygen ions

Plateau formation and marginal stability of the oxygen O⁵⁺ VDF at 1.44 R_s

Model velocity distribution function

$$f_j(w_{\parallel}, w_{\perp}) = \frac{F_{j\parallel}(w_{\parallel})}{2\pi W_{j\perp}^2(w_{\parallel})} \exp(-\frac{w_{\perp}^2}{2W_{j\perp}^2(w_{\parallel})})$$

$$W_{j\perp}^2(w_{\parallel}) = \frac{F_{j\perp}(w_{\parallel})}{F_{j\parallel}(w_{\parallel})}$$

Effective perpendicular thermal speed

Vocks & Marsch, Ap. J. 568, 1030, 2002

Proton diffusion in oblique Alfvén/cyclotron and fast-magnetoacoustic waves I

Diffusion circles centered at the local Alfvén speed (dots)

Contour lines: 80, 60, 40, 20, 10. 03, 01, 003, 001 % of the maximum.

Isocontours in plane defined by V and **B**

Marsch and Bouroauine, 2011

Resonance and diffusion plateaus

Cyclotron resonance

$$V_{\parallel} = C(y_{\parallel}, y_{\perp}) - \frac{s}{y_{\parallel}} V_{A} \frac{C(\mathbf{k}) = \omega(\mathbf{k})/k_{\parallel}}{\text{Phase speed}}$$

$$y_{\parallel} = k_{\parallel} V_{\rm A} / \Omega_j$$
$$y_{\perp} = k_{\perp} V_{\rm A} / \Omega_j$$

Normalized wave vector

$$\int_{0}^{V_{\parallel}} dV_{\parallel}' C(V_{\parallel}') = V_{\rm A}^{2} \int_{y_{0}}^{y_{\parallel}} dy_{\parallel}' g(y_{\parallel}', y_{\perp}) \left(\frac{s}{y_{\parallel}'^{2}} + \frac{dg}{dy_{\parallel}'}\right) \qquad C(\mathbf{y}) = g(y_{\parallel}, y_{\perp}) V_{\rm A}$$

$$E(V_{\parallel}, V_{\perp}) = \frac{1}{2} \left(V_{\perp}^2 + V_{\parallel}^2 \right) - \int_0^{V_{\parallel}} dV_{\parallel}' C(V_{\parallel}')$$

 $V_{\parallel}(y_{\parallel}) = C_{\mathrm{F},\mathrm{S}}(\theta(y_{\parallel})) - V_{\mathrm{A}}\frac{s}{y_{\parallel}} = \frac{V_{\mathrm{A}}}{y_{\parallel}}(\frac{\omega_{\mathrm{F},\mathrm{S}}}{\Omega_{j}} - s)$

Cyclotron resonance

$$V_{\parallel}(y_{\parallel}) = V_{\rm A}(1 - \frac{s}{y_{\parallel}}) = \frac{V_{\rm A}}{y_{\parallel}}(\frac{\omega_{\rm A}}{\Omega_j} - s)$$

Alfven-ion-cyclotron wave

$$E_{\mathrm{A}}(V_{\parallel},V_{\perp}) = \frac{1}{2} \left(V_{\perp}^2 + (V_{\parallel} - V_{\mathrm{A}})^2 \right)$$

Fast magnetoacoustic wave

$$E_{\mathrm{F},\mathrm{S}}(V_{\parallel},V_{\perp},\theta) = \frac{1}{2} \left(V_{\perp}^2 + (V_{\parallel} - C_{\mathrm{F},\mathrm{S}}(\theta))^2 \right)$$

Marsch and Bouroauine, 2011

Proton diffusion in oblique Alfvén/cyclotron and fast-magnetoacoustic waves II

Marsch and Bouroauine, Ann. Geophys. 2011

Normalized magnetic helicity

Helicity versus angle between solar wind flow and magnetic field vectors (STEREO, MAG)

Hodograph of normal and transverse magnetic field component, with (b) parallel lefthanded and (c) perpendicular righthanded polarization

He, Tu, Marsch, and Yao, Astrophys.J. 2012

Anisotropic turbulent cascade

- MHD simulations and analytic models predict cascade from small to large k_⊥, leaving k_{||} unchanged.
- Critical balance assumes ω_A = $k_{\parallel}V_A \cong \omega_{NL} = k_{\perp} \delta V$ (Goldreich and Sridar, ApJ. 1995, 1997)
- Kinetic Alfvén wave (KAW) with large k_⊥ does not necessarily have high frequency ω_A.
- In a low-beta plasma, KAWs are Landau-damped, heating electrons preferentially.

after Cranmer, 2010

Kinetic cascade beyond MHD of solar wind turbulence in two-dimensional hybrid simulations

Verscharen, Marsch, Motschmann, and Müller, Phys. Plasmas 2012

Dispersion relation and wave power

Verscharen, Marsch, Motschmann, and Müller, Phys. Plasmas 2012

Invalidity of classical transport theory

 $n_{e} = 3-10 \text{ cm}^{-3},$ $T_{e} = 1-2 \ 10^{5} \text{ K at } 1 \text{ AU}$

• Strong heat flux tail

• Collisional free path λ_c much larger than temperaturegradient scale L

• Polynomial expansion about a local Maxwellian hardly converges, as $\lambda_c >> L$

Pilipp et al., JGR, **92**, 1075, 1987

Solar wind electrons: Core-halo evolution

Halo is relatively increasing while strahl is diminishing.

Normalized core remains constant while halo is relatively increasing.

Maksimovic et al., JGR, 2005

Scattering by meso-scale magnetic structures

Collisional core – runaway strahl

Collisional transport in corona with Fokker-Planck operator in Boltzmann equation with self-consistent electric field

Smith, Marsch, Helander, ApJ, 751, 2012

Heat flux smaller than classical

Suprathermal coronal electrons caused by wave-particle interactions I

$$\frac{\partial f}{\partial t} + v_{\parallel} \frac{\partial f}{\partial s} + \left(g_{\parallel} - \frac{e}{m_e} E_{\parallel}\right) \frac{\partial f}{\partial v_{\parallel}} + \frac{v_{\perp}}{2A} \frac{\partial A}{\partial s} \left(v_{\perp} \frac{\partial f}{\partial v_{\parallel}} - v_{\parallel} \frac{\partial f}{\partial v_{\perp}}\right) = \left(\frac{\delta f}{\delta t}\right)_{w-p} + \left(\frac{\delta f}{\delta t}\right)_{\text{Coul}} \cdot \frac{\partial f}{\partial v_{\parallel}} = \frac{\partial f}{\partial v_{\perp}} \left(\frac{\delta f}{\delta t}\right)_{w-p} + \frac{\partial f}{\partial v_{\parallel}} \cdot \frac{\partial f}{\partial v_{\parallel}} = \frac{\partial f}{\partial v_{\parallel}} \cdot \frac{\partial f}{\partial v_{\parallel}} \cdot \frac{\partial f}{\partial v_{\parallel}} = \frac{\partial f}{\partial v_{\parallel}} \cdot \frac{\partial f}{\partial v_{\parallel}} \cdot \frac{\partial f}{\partial v_{\parallel}} \cdot \frac{\partial f}{\partial v_{\parallel}} = \frac{\partial f}{\partial v_{\parallel}} \cdot \frac{\partial f}{\partial v_{\parallel$$

Electron pitch-angle scattering in the whistler wave field

Phase speed $v_{A,e}$ in solar corona

equation with waves and collisions

A(s) flux tube area function

Vocks and Mann, Ap. J., 593, 1134, 2003

Suprathermal coronal electrons caused by wave-particle interactions II

 $s = 0.014 R_s$

Vocks and Mann, Ap. J., **593**, 1134, 2003

Conclusions

- Solar wind ion velocity distributions are shaped generally by resonant interactions with different kinds of plasma waves.
- The proton core temperature anisotropy originates from diffusion involving resonances with mostly parallel and anti-parallel uncompressive ion-cyclotron waves.
- The hot proton beam at its outer edges is shaped and confined by proton diffusion in highly oblique compressive Alfvén/ion-cyclotron waves.
- Diffusion implies inelastic scattering of protons by waves, and thus leads to turbulence dissipation.
- The electron core is shaped by Coulomb collisions and the halo and strahl are affected by whistler turbulence.