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General features and Kolmogorov’s theory

Fluid motions
@+(V-V)V=—@+UV2V . V-v=0
ot P
Laminar flows, Turbulent flows
regular, deterministic description @

— a)irregularity - statistical treatment
Kinetic energy of b)rapid mixing - turbulent diffusion
flows dies out due to c)wide range of length scales
fluid viscosity
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@ Reynolds number = Re= Vo Ly Re>>1
Re>1 v




Dissipation of kinetic energy of turbulent flow?

Richardson’s idea (Landau-Hopf mechanism)

1)Turbulence causes the formation of eddies of many different length-scale structures.
2)Most of the kinetic energy of a turbulent motion is contained in the large-scale
structures.

3)The energy “cascades” from these large-scale structures to smaller scale structures by an
Inertial and essentially inviscid mechanism.

4)This process creates structures that are small enough that molecular diffusion becomes
Important and viscous dissipation of energy finally takes place.

L2L>L>L>.>L >. > Ly

g
inertial interval, & = const Kolmogorov scales,
dissipation of the energy
by viscosity

— direction of the energy cascade, ¢ —

This is so called direct energy cascade



inertial term v, L,
VvIScous term )

Reynolds number = Re, =

¥

L2L>L>L>.>L >. > Ly,

inertial intervafl, ¢ = const Kolmogorov scales,
dissipation of the energy
by viscosity
Re,>Re, >Re,>Re,>..>Re, >...  ..>Re,
inertial interval, & = const Kolmogorov scales,

dissipation of the energy
by viscosity




Kolmogorov’s hypotheses - turbulence is locally
Isotropic

1) Energy dissipated per unit time and per unit mass

by viscosity
v, v, ~ V,Re, " Kolmogorov's
gx—2 = =
L, L, ~ L,Re, ¥ scales

2)Inertial interval: turbulence characteristics are specified in terms of & = const

<(vl —v2)2> = <(5v)2> ~ &P r~L - Kolmogorov's
turbulent spectra

E(k)~&™™®, L'<<k<<ly
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2-D and quasi-2-D limits of turbulence

U

2-D Fluid turbulence

v=—(V¢x2) :> V3¢
V xV=V?gz ot

w, =0
20

Inertial interval - Invariants

v

—(Vgxz)-VV=0

2
W = j(V¢) dr < energy - Energy cascades into longer scales =

Inverse cascade process in k-space

V = J' (V2¢)Zdr & enstrophy

Arnold, 1965:; Kraichnan, 1967
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quasi-2-D limits of turbulence

admits excitation of linear waves

Inhomogeneous media » : - :
(e, = 0)with characteristic spatial scales

e

Fluid, rotating atmosphere Magnetized plasma
Rossby waves Drift type waves
=(gH,)" /(f) v
,09 g L pS:(Te/mi) /a)ci
Rossby radius ion Larmor radius
gziéz ngIni <<1 gzigz ,oSVIn& <<1
(f)ot f w, ot B,




admits excitation of linear waves
(e, = 0)with characteristic spatial scales

Rossby waves

Py :(QHO)J/2 /<f>
Rossby radius

oy =[(kx2z)-VInf]/(1+k?)

wave turbulence »

e

Drift - type waves

IOS — (Te /mi )1/2 /a)ci
lon Larmor radius

o, =[(kx2z)-Vinn, ]/(1+k?)

energy cascade in
K —space?



Inverse cascade and formation of structures —

Large scale flows

2

Quasi-2-D wave turbulence

o

v=—(Vgxz)
Vxv=Viz ! = %(V2¢—¢)—[(V¢xz).V](V2¢+In(;])—:j=0
o, (K)#0

Charny-Obukhov-Hasegawa-Mima equation

1 :j [(W)sz}dr < energy Inertial interval —
2 2 » energy cascading in k-space?
\4 =_[[(V2¢) +(Vg) }dr & enstrophy
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Inertial interval - spectral properties

Quasi-2-D wave turbulence

w,=f(k)=0

Decay of one wave into two
other waves:

k,+k,+k,=0

energy= W, _ f(k)
enstrophy =V,

turbulence property of H-M eq. -
» cascading model in inertial interval

k-values of two waves produced by

» the decay proces can trace the
cascade proces

Thus, k-values decide the partition of energy
and enstrophy of newly created waves.

and enstrophy transfer in k-space.

The cascade process therefore gives the energy
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Inertial interval - spectral properties

One, at k >>k_

. . —4
spectrum 1s 1sotropic with W, ~ K
and turbulence is self-similar =

Direct cascade in 2-D fluid

cascading model produces energy turbulence

spectrum with two distinctive
regions Wk — f (k)

Second, at K <<k,

» Inverse cascade, Spectrtum is

anisotropic with k and Kk, ,
turbulence is
not self-similar

Quasi-2-D wave turbulence is in general not self-similar and
characterized by the anisotropic spectrum
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two distinctive regions

second, at K <<K.

Inverse cascade, Spectrtum is
anisotropic with k and ky :
turbulence is

not self-similar

One, at K >>K,

. ) -4
spectrum is 1sotropic with Wk ~Kk
and turbulence is self-similar =
Direct cascade in 2-D fluid

turbulence

3 ww ¥

Inverse cascade

Direct cascade
K

0 K.

Kolmogorov’s scales

Quasi-2-D wave turbulence is in general not self-similar
and characterized by the anisotropic spectrum
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Large scale flows, intermittency and

non-Kolmlgorov’s turbulence

Spectrum condensation | |[& 7/D(kx1ky) 0 — {k ~

Inertial interval at k <<Kk_
Spectrtum is anisotropic and tends

to condense at
ky ~0
kX - kC

This predicts the formation of

zonal flows in y-direction which are
periodic in the x-direction =
Coherent flow structure

Quasi-2-D wave turbulence is
dominated by such coherent structures,
turbulence is intermittent
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Zonal

flows

Streamers
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Non-linear dynamics

V=—(V$x2z), ¢=(d)+¢ = v={(V)+¥, (¥)=0
{ vn, } {drift type} { (V,7,) } o(V,)
= = — 77
VT,,VB, waves Reynolds stress ot

IS converted

Kinetic energy
of large scale

via fluctuation

free thermodynamic
energy

induced Reynolds
stress

flow (zonal
flow)
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Non-linear dynamics

v=—(Vgxz), ¢=(g)+¢ = v={(V)+V, (¥)=0

v=—(Vgxz)
Vxv=Vigz ¢ = %(V2¢—¢)—[(V¢xz)-vj£v2¢+|n“rj_:]
o, (K)#0
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