The Diffusion Model of Turbulence Implications from dissipation due to reconnection

D. Sundkvist¹ and S.D. Bale¹

¹Space Sciences Laboratory University of California at Berkeley

Magnetic Reconnection and Plasma Turbulence Uppsala 29 May 2007

Outline

- Reconnection as a channel for dissipation in turbulent plasma
- The problem with the dissipation range
- 2 Turbulence as diffusive energy transfer
 - Diffusion-advection phenomenology
 - The effect of reconnection

3 Results

- Numerical Implementation
- Input Sources and Sinks
- Main Results

◎ ▶ ▲ 三 ▶ ▲ 三 ▶ 三 三 ● ○ ○ ○

Reconnection as a channel for dissipation in turbulent plasma The problem with the dissipation range

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Outline

- Reconnection as a channel for dissipation in turbulent plasma
- The problem with the dissipation range
- 2 Turbulence as diffusive energy transfer
 - Diffusion-advection phenomenology
 - The effect of reconnection

3 Results

- Numerical Implementation
- Input Sources and Sinks
- Main Results

Observation of Reconnection in Turbulence

- Reconnection in thin current sheets in turbulence.
- Energy conversion of magnetic energy to particle kinetic and thermal energies (j · E measured).
- Abundance of thin current sheets \Rightarrow efficient dissipation mechanism.
- Thickness of current sheets around $\lambda_i = c/\omega_i$.
- Dissipation rates D_{reconnection}/D_{damping} ~ 100 at length scales λ_i.

Observation of Reconnection in Turbulence

- Reconnection in thin current sheets in turbulence.
- Energy conversion of magnetic energy to particle kinetic and thermal energies (**j** · **E** measured).
- Abundance of thin current sheets \Rightarrow efficient dissipation mechanism.
- Thickness of current sheets around $\lambda_i = c/\omega_i$.
- Dissipation rates D_{reconnection}/D_{damping} ~ 100 at length scales λ_i.

Observation of Reconnection in Turbulence

- Reconnection in thin current sheets in turbulence.
- Energy conversion of magnetic energy to particle kinetic and thermal energies (**j** · **E** measured).
- Abundance of thin current sheets ⇒ efficient dissipation mechanism.
- Thickness of current sheets around $\lambda_i = c/\omega_i$.
- Dissipation rates D_{reconnection}/D_{damping} ~ 100 at length scales λ_i.

Observation of Reconnection in Turbulence

- Reconnection in thin current sheets in turbulence.
- Energy conversion of magnetic energy to particle kinetic and thermal energies (**j** · **E** measured).
- Abundance of thin current sheets ⇒ efficient dissipation mechanism.
- Thickness of current sheets around $\lambda_i = c/\omega_i$.
- Dissipation rates D_{reconnection}/D_{damping} ~ 100 at length scales λ_i.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Observation of Reconnection in Turbulence

- Reconnection in thin current sheets in turbulence.
- Energy conversion of magnetic energy to particle kinetic and thermal energies (**j** · **E** measured).
- Abundance of thin current sheets ⇒ efficient dissipation mechanism.
- Thickness of current sheets around $\lambda_i = c/\omega_i$.
- Dissipation rates D_{reconnection}/D_{damping} ~ 100 at length scales λ_i.

Reconnection as a channel for dissipation in turbulent plasma The problem with the dissipation range

<ロ> <同> <同> < 回> < 回> < 回> < 回</p>

Outline

- Reconnection as a channel for dissipation in turbulent plasma
- The problem with the dissipation range
- 2 Turbulence as diffusive energy transfer
 - Diffusion-advection phenomenology
 - The effect of reconnection

3 Results

- Numerical Implementation
- Input Sources and Sinks
- Main Results

Turbulence as diffusive energy transfer Results Summary Reconnection as a channel for dissipation in turbulent plasma The problem with the dissipation range

Theory (vs Observations)

Sundkvist et al., Manuscript in prep.

- Injection \rightarrow dissipationless transfer in inertial range \rightarrow dissipation
- Wave damping → Exponential cut-off in dissipation range
 [Li et al., 2001]

Sundkvist (sundkvist@ssl.berkeley.edu) Energy Diffusion and Dissipation due to Reconnection

Turbulence as diffusive energy transfer Results Summary Reconnection as a channel for dissipation in turbulent plasma The problem with the dissipation range

Theory (vs Observations)

Sundkvist et al., Manuscript in prep.

- Injection \rightarrow dissipationless transfer in inertial range \rightarrow dissipation
- Wave damping → Exponential cut-off in dissipation range
 [Li et al., 2001]

Sundkvist (sundkvist@ssl.berkeley.edu) Energy Diffusion and Dissipation due to Reconnection

Turbulence as diffusive energy transfer Results Summary Reconnection as a channel for dissipation in turbulent plasma The problem with the dissipation range

ヨト イヨト ヨヨ わえの

Observations in Solar wind [Leamon et al., 1998]

Second "power law" observed, not dissipation (exp cut-off)

Turbulence as diffusive energy transfer Results Summary Reconnection as a channel for dissipation in turbulent plasma The problem with the dissipation range

→ < Ξ →</p>

고는

- Observations in Solar wind [Leamon et al., 1998]
- Second "power law" observed, not dissipation (exp cut-off)

Reconnection as a channel for dissipation in turbulent plasma The problem with the dissipation range

- Dispersion range with faster diffusion rate.
- Introduced ad-hoc to agree with observation [Stawicki et al., 2001].

Reconnection as a channel for dissipation in turbulent plasma The problem with the dissipation range

★ E ▶ ★ E ▶ E E ♥ 9 Q @

- Dispersion range with faster diffusion rate.
- Introduced ad-hoc to agree with observation [Stawicki et al., 2001].

< < >> < </>

Reconnection as a channel for dissipation in turbulent plasma The problem with the dissipation range

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ● □ ● ● ●

Purpose of study

 Use simple model (isotropic, Kolmogorov) of MHD turbulence to investigate the observable effects of dissipation due to reconnection.

Diffusion-advection phenomenology The effect of reconnection

Outline

Motivation

- Reconnection as a channel for dissipation in turbulent plasma
- The problem with the dissipation range

2 Turbulence as diffusive energy transfer

- Diffusion-advection phenomenology
- The effect of reconnection

3 Results

- Numerical Implementation
- Input Sources and Sinks
- Main Results

Diffusion-advection phenomenology The effect of reconnection

Turbulence as Energy Diffusion in Wavenumber Space

- Developed for hydrodynamical turbulence by [Leith, 1967]
- Generalized to MHD turbulence [Zhou and Matthaeus, 1990].
- Applied in a varitey of contexts.

◆□ > ◆□ > ◆臣 > ◆臣 > 三日日 のへで

Diffusion-advection phenomenology The effect of reconnection

Turbulence as Energy Diffusion in Wavenumber Space

- Developed for hydrodynamical turbulence by [Leith, 1967]
- Generalized to MHD turbulence [Zhou and Matthaeus, 1990].
- Applied in a varitey of contexts.

Diffusion-advection phenomenology The effect of reconnection

Turbulence as Energy Diffusion in Wavenumber Space

- Developed for hydrodynamical turbulence by [Leith, 1967]
- Generalized to MHD turbulence [Zhou and Matthaeus, 1990].
- Applied in a varitey of contexts.

Phenomenology of Diffusive Turbulent Energy Transfer

• Transport equation for 3-dim spectral density $\widehat{W}(\mathbf{k})$

$$\frac{\partial \widehat{W}(\mathbf{k})}{\partial t} = -\nabla_{\mathbf{k}} \cdot \mathbf{F}(\mathbf{k})$$

where the flux of energy in wavenumber space is

$$\mathbf{F}(\mathbf{k}) = -D\nabla_{\mathbf{k}}\widehat{W}(\mathbf{k})$$

• The diffusion coefficient is generally nonlinear.

Phenomenology of Diffusive Turbulent Energy Transfer

• Transport equation for 3-dim spectral density $\widehat{W}(\mathbf{k})$

$$\frac{\partial \widehat{W}(\mathbf{k})}{\partial t} = -\nabla_{\mathbf{k}} \cdot \mathbf{F}(\mathbf{k})$$

where the flux of energy in wavenumber space is

$$\mathbf{F}(\mathbf{k}) = -D\nabla_{\mathbf{k}}\widehat{W}(\mathbf{k})$$

• The diffusion coefficient is generally nonlinear.

Isotropic Case

• One-dimensional energy spectrum $W(k) = 4\pi k^2 \hat{W}(\mathbf{k})$ gives

$$\frac{\partial W(k)}{\partial t} = \underbrace{\frac{\partial}{\partial k} \left[k^2 D(k) \frac{\partial}{\partial k} \left(\frac{k^{-2}}{4\pi} W(k) \right) \right]}_{\text{diffusive transfer in inertial range}} + \underbrace{S(k) - \gamma(k) W(k)}_{\text{Sources and sinks}}$$

Kolmogorov wavenumber diffusion coefficient

$$D(k) = C^2 v_A k^{7/2} \left(\frac{W(k)}{2U_B}\right)^{1/2}$$

gives Kolmogorov scaling in inertial range $W = W_0 k^{-5/3}$.

Isotropic Case

• One-dimensional energy spectrum $W(k) = 4\pi k^2 \widehat{W}(\mathbf{k})$ gives

$$\frac{\partial W(k)}{\partial t} = \underbrace{\frac{\partial}{\partial k} \left[k^2 D(k) \frac{\partial}{\partial k} \left(\frac{k^{-2}}{4\pi} W(k) \right) \right]}_{\text{diffusive transfer in inertial range}} + \underbrace{S(k) - \gamma(k) W(k)}_{\text{Sources and sinks}}$$

Kolmogorov wavenumber diffusion coefficient

$$D(k) = C^2 v_A k^{7/2} \left(\frac{W(k)}{2U_B}\right)^{1/2}$$

gives Kolmogorov scaling in inertial range $W = W_0 k^{-5/3}$.

The Flux Term

Can be written as

$$\frac{\partial}{\partial \tilde{k}} \left[\tilde{k}^{11/2} \tilde{W}(\tilde{k})^{1/2} \frac{\partial}{\partial \tilde{k}} \left(\tilde{k}^{-2} \tilde{W}(\tilde{k}) \right) \right] = \frac{\partial F(\tilde{k}, t)}{\partial \tilde{k}}$$
$$F(\tilde{k}, t) = D(\tilde{k}, t) \frac{\partial \tilde{W}}{\partial \tilde{k}} + A(\tilde{k}, t) \tilde{W}$$

with the diffusion and advection coefficients being

$$D(ilde{k},t) = ilde{k}^{7/2}$$
 $A(ilde{k},t) = -2 ilde{k}^{5/2} ilde{W}^{1/2}$

(ロ) (四) (三) (三) (三) (三) (○) (○)

Sources and sinks

$$\frac{\partial W(k)}{\partial t} = \frac{\partial}{\partial k} \left[k^2 D(k) \frac{\partial}{\partial k} \left(\frac{k^{-2}}{4\pi} W(k) \right) \right] + S(k) - \gamma(k) W(k)$$

• Source injection at $k = k_0$:

$$\mathbf{S}(\mathbf{k}) = \mathbf{S}(\mathbf{k}_0)\delta(\mathbf{k} - \mathbf{k}_0)$$

Dissipation by damping of (quasi-)linear waves

$$\gamma(\mathbf{k}) = \gamma_0 k^2 H(k - k_d)$$

 k^2 dependence consistent with magnetosonic waves

Sources and sinks

$$\frac{\partial W(k)}{\partial t} = \frac{\partial}{\partial k} \left[k^2 D(k) \frac{\partial}{\partial k} \left(\frac{k^{-2}}{4\pi} W(k) \right) \right] + S(k) - \gamma(k) W(k)$$

• Source injection at $k = k_0$:

$$\mathbf{S}(\mathbf{k}) = \mathbf{S}(\mathbf{k}_0)\delta(\mathbf{k} - \mathbf{k}_0)$$

Dissipation by damping of (quasi-)linear waves

$$\gamma(k) = \gamma_0 k^2 H(k - k_d)$$

 k^2 dependence consistent with magnetosonic waves

Diffusion-advection phenomenology The effect of reconnection

Outline

Motivation

- Reconnection as a channel for dissipation in turbulent plasma
- The problem with the dissipation range

2 Turbulence as diffusive energy transfer

- Diffusion-advection phenomenology
- The effect of reconnection

3 Results

- Numerical Implementation
- Input Sources and Sinks
- Main Results

Diffusion-advection phenomenology The effect of reconnection

Observational Constraints and Model

• Localized to length scales around λ_i .

• Dissipation rates $D_{reconnection}/D_{damping} \sim 100$ around λ_i .

$$\frac{\partial W(k)}{\partial t} = \frac{\partial}{\partial k} \left[k^2 D(k) \frac{\partial}{\partial k} \left(\frac{k^{-2}}{4\pi} W(k) \right) \right] + S(k) - \gamma(k) W(k) - \mathbf{R}(k)$$

Model dissipation due to reconnection with

$$R(k) = \gamma_R(k)W(k) = R_0 \frac{1}{\sqrt{\pi\epsilon_R}} e^{-(k-k_R)^2/\epsilon_R}W(k)$$

Observational Constraints and Model

- Localized to length scales around λ_i .
- Dissipation rates $D_{reconnection}/D_{damping} \sim 100$ around λ_i .

New term capturing observational features \Rightarrow

$$\frac{\partial W(k)}{\partial t} = \frac{\partial}{\partial k} \left[k^2 D(k) \frac{\partial}{\partial k} \left(\frac{k^{-2}}{4\pi} W(k) \right) \right] + S(k) - \gamma(k) W(k) - \mathbf{R}(k)$$

Model dissipation due to reconnection with

$$R(k) = \gamma_R(k)W(k) = R_0 \frac{1}{\sqrt{\pi\epsilon_R}} e^{-(k-k_R)^2/\epsilon_R}W(k)$$

Observational Constraints and Model

- Localized to length scales around λ_i .
- Dissipation rates $D_{reconnection}/D_{damping} \sim 100$ around λ_i .

New term capturing observational features \Rightarrow

$$\frac{\partial W(k)}{\partial t} = \frac{\partial}{\partial k} \left[k^2 D(k) \frac{\partial}{\partial k} \left(\frac{k^{-2}}{4\pi} W(k) \right) \right] + S(k) - \gamma(k) W(k) - \mathbf{R}(k)$$

Model dissipation due to reconnection with

$$R(k) = \gamma_R(k)W(k) = R_0 \frac{1}{\sqrt{\pi\epsilon_R}} e^{-(k-k_R)^2/\epsilon_R}W(k)$$

Observational Constraints and Model

- Localized to length scales around λ_i .
- Dissipation rates $D_{reconnection}/D_{damping} \sim 100$ around λ_i .

New term capturing observational features \Rightarrow

$$\frac{\partial W(k)}{\partial t} = \frac{\partial}{\partial k} \left[k^2 D(k) \frac{\partial}{\partial k} \left(\frac{k^{-2}}{4\pi} W(k) \right) \right] + S(k) - \gamma(k) W(k) - R(k)$$

Model dissipation due to reconnection with

$$\mathbf{R}(k) = \gamma_{R}(k)W(k) = R_{0}\frac{1}{\sqrt{\pi\epsilon_{R}}}e^{-(k-k_{R})^{2}/\epsilon_{R}}W(k)$$

Numerical Implementation Input Sources and Sinks Main Results

Outline

Motivation

- Reconnection as a channel for dissipation in turbulent plasma
- The problem with the dissipation range
- 2 Turbulence as diffusive energy transfer
 - Diffusion-advection phenomenology
 - The effect of reconnection

3 Results

- Numerical Implementation
- Input Sources and Sinks
- Main Results

Numerical Implementation Input Sources and Sinks Main Results

Numerical Implementation

- Equation written on dimensionless form.
- Finite-differrenced with an implicit Crank-Nicholson scheme for stability.
- Evolved in time until steady-state is reached.

Numerical Implementation Input Sources and Sinks Main Results

Numerical Implementation

- Equation written on dimensionless form.
- Finite-differrenced with an implicit Crank-Nicholson scheme for stability.
- Evolved in time until steady-state is reached.

Numerical Implementation Input Sources and Sinks Main Results

Numerical Implementation

- Equation written on dimensionless form.
- Finite-differrenced with an implicit Crank-Nicholson scheme for stability.
- Evolved in time until steady-state is reached.

◆□ > ◆□ > ◆臣 > ◆臣 > 三日日 のへで

Numerical Implementation Input Sources and Sinks Main Results

Outline

Motivation

- Reconnection as a channel for dissipation in turbulent plasma
- The problem with the dissipation range
- 2 Turbulence as diffusive energy transfer
 - Diffusion-advection phenomenology
 - The effect of reconnection

3 Results

- Numerical Implementation
- Input Sources and Sinks
- Main Results

Numerical Implementation Input Sources and Sinks Main Results

Example of Sources and Sinks

Sundkvist et al., Manuscript in prep.

Sundkvist (sundkvist@ssl.berkeley.edu)

Energy Diffusion and Dissipation due to Reconnection

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

Numerical Implementation Input Sources and Sinks Main Results

Outline

Motivation

- Reconnection as a channel for dissipation in turbulent plasma
- The problem with the dissipation range
- 2 Turbulence as diffusive energy transfer
 - Diffusion-advection phenomenology
 - The effect of reconnection

3 Results

- Numerical Implementation
- Input Sources and Sinks
- Main Results

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Numerical Implementation Input Sources and Sinks Main Results

Temporal Evolution of Solution

Sundkvist et al., Manuscript in prep.

(ロ) (四) (三) (三) (三) (三) (○) (○)

Numerical Implementation Input Sources and Sinks Main Results

Altered Behaviour for Small Scales

Sundkvist et al., Manuscript in prep.

◆□ ▶ ◆□ ▶ ◆ 三 ▶ ◆ 三 ▶ ◆ □ ▶ ◆ ○ ◆ ○ ◆

 Effect of dissipation due to reconnection can be "observational power law"

Numerical Implementation Input Sources and Sinks Main Results

Altered Behaviour for Small Scales II

Sundkvist et al., Manuscript in prep.

[Sundkvist et al., 2007]

◆□ > ◆□ > ◆臣 > ◆臣 > 三日日 のへで

• If reconnection scale size is narrow \rightarrow "dip" in spectra

Sundkvist (sundkvist@ssl.berkeley.edu) Energy Diffusion and Dissipation due to Reconnection

Numerical Implementation Input Sources and Sinks Main Results

Altered Behaviour for Small Scales II

Sundkvist et al., Manuscript in prep.

[Sundkvist et al., 2007]

◆□ > ◆□ > ◆臣 > ◆臣 > 三日日 のへで

• If reconnection scale size is narrow \rightarrow "dip" in spectra

Numerical Implementation Input Sources and Sinks Main Results

Altered Behaviour for Small Scales II

Sundkvist et al., Manuscript in prep.

[Sundkvist et al., 2007]

• If reconnection scale size is narrow \rightarrow "dip" in spectra

Numerical Implementation Input Sources and Sinks Main Results

Altered Behaviour for Small Scales II

Sundkvist et al., Manuscript in prep.

[Sundkvist et al., 2007]

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

• If reconnection scale size is narrow \rightarrow "dip" in spectra

Summary

- Considered a diffusive energy transport model for turbulence.
- Modeled the effect of dissipation due to reconnection localized around λ_i with new term.
- Effect of reconnection and damping together \Rightarrow "observational power law"
- Narrow region of reconnection scale sizes creates dip in spectra.
- Outlook
 - Additional effects from dispersion (accelerated diffusion for dispersion range wavenumbers) to be included.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Summary

- Considered a diffusive energy transport model for turbulence.
- Modeled the effect of dissipation due to reconnection localized around λ_i with new term.
- Effect of reconnection and damping together \Rightarrow "observational power law"
- Narrow region of reconnection scale sizes creates dip in spectra.
- Outlook
 - Additional effects from dispersion (accelerated diffusion for dispersion range wavenumbers) to be included.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Summary

- Considered a diffusive energy transport model for turbulence.
- Modeled the effect of dissipation due to reconnection localized around λ_i with new term.
- Effect of reconnection and damping together ⇒
 "observational power law"
- Narrow region of reconnection scale sizes creates dip in spectra.
- Outlook
 - Additional effects from dispersion (accelerated diffusion for dispersion range wavenumbers) to be included.

Summary

- Considered a diffusive energy transport model for turbulence.
- Modeled the effect of dissipation due to reconnection localized around λ_i with new term.
- Effect of reconnection and damping together ⇒
 "observational power law"
- Narrow region of reconnection scale sizes creates dip in spectra.
- Outlook
 - Additional effects from dispersion (accelerated diffusion for dispersion range wavenumbers) to be included.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Summary

- Considered a diffusive energy transport model for turbulence.
- Modeled the effect of dissipation due to reconnection localized around λ_i with new term.
- Effect of reconnection and damping together ⇒
 "observational power law"
- Narrow region of reconnection scale sizes creates dip in spectra.
- Outlook
 - Additional effects from dispersion (accelerated diffusion for dispersion range wavenumbers) to be included.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ●□□ のQ@

Summary

- Considered a diffusive energy transport model for turbulence.
- Modeled the effect of dissipation due to reconnection localized around λ_i with new term.
- Effect of reconnection and damping together ⇒
 "observational power law"
- Narrow region of reconnection scale sizes creates dip in spectra.
- Outlook
 - Additional effects from dispersion (accelerated diffusion for dispersion range wavenumbers) to be included.

For Further Reading I

- Leamon, R. J., Smith, C. W., Ness, N. F., Matthaeus, W. H., and Wong, H. K. (1998).
 Observational constraints on the dynamics of the interplanetary magnetic field dissipation range.
 J. Geophys. Res., 103:4775–4787.
- Leith, C. E. (1967).

Diffusion Approximation to Inertial Energy Transfer in Isotropic Turbulence.

Phys. Fluids, 10:1410-1415.

For Further Reading II

 Li, H., Gary, S. P., and Stawicki, O. (2001). On the dissipation of magnetic fluctuations in the solar wind. *Geophys. Res. Lett.*, 28:1347–1350.
 Retinò, A., Sundkvist, D., Vaivads, A., Mozer, F., André, M., and Owen, C. J. (2007). In situ evidence of magnetic reconnection in turbulent plasma. *Nature Physics*, 3:236–238.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

For Further Reading III

Stawicki, O., Gary, S. P., and Li, H. (2001).

Solar wind magnetic fluctuation spectra: Dispersion versus damping.

J. Geophys. Res., 106:8273-8282.

Sundkvist, D., Retinò, A., Vaivads, A., and Bale, S. D. (2007).

Dissipation in turbulent plasma due to reconnection in thin current sheets.

Accepted to Phys. Rev. Letters.

For Further Reading IV

Zhou, Y. and Matthaeus, W. H. (1990). Models of inertial range spectra of interplanetary magnetohydrodynamic turbulence. *J. Geophys. Res.*, 95:14881–14892.

Sundkvist (sundkvist@ssl.berkeley.edu) Energy Diffusion and Dissipation due to Reconnection