Dust-plasma interaction through magnetosphere-ionosphere coupling in Saturn’s plasma disk

Shotaro Sakai¹, Shigeto Watanabe¹, Michiko W. Morooka², Madeleine K. G. Holmberg³, Jan-Erik Wahlund³, Donald A. Gurnett⁴, William S. Kurth⁴

1: Department of Cosmosciences, Hokkaido University
2: Planetary and Plasma Atmospheric Research Center, Graduate School of Science, Tohoku University
3: Swedish Institute of Space Physics, Uppsala
4: Department of Physics and Astronomy, University of Iowa
Enceladus plume & E ring

- Enceladus plume (~3.95 Rs)
 - Main component
 - Water gas [Waite et al., 2006]
 - Source
 - Mainly Enceladus plume

- E ring
 - Location
 - 3 – 8 Rs
 - Composition
 - H_2O^+ (~80 %) [Young et al., 2005]
 - Dusts [Kurth et al., 2006; Kempf et al., 2008]
Depletion of electrons

- Electron density is smaller than ion density [Wahlund et al., 2009, Yaroshenko et al., 2009, Morooka et al., 2011]
 - 50 – 70 cm$^{-3}$ less

→ Wahlund et al. [2009] suggested that a large amount of negatively dusts are existent [Wahlund et al., 2009].

![Graph showing electron and ion densities](image)

Density profile [Morooka et al., 2011], Total dust density [Shafiq et al., 2011]
• Observations of inner magnetospheric ion by Cassini RPWS/LP
 • Ion speed is smaller than the co-rotation velocity [Holmberg et al., 2012].
 • May dust affects the motion of ion?
Purpose of this study & method

• Investigation of a dust-plasma interaction in Saturn’s system
 • What is a role of dusts in Saturn’s inner magnetosphere?
 • It is possible that the dust-plasma interaction occurs the proto-star/planetary disk.
 • We estimate dust density or thickness (z-direction) from ion velocity in this study.

• Methods
 • Numerical model
 • Using a multi-fluid model
 • Including Coulomb collision and mass loading
 • Considering magnetosphere-ionosphere coupling
Inner magnetospheric model

- **Primitive equations (a multi-fluid equations)**

\[
\frac{\partial \rho_k}{\partial t} + \nabla \cdot (\rho_k v_k) = S_k - L_k \\
\frac{\partial (\rho_k v_k)}{\partial t} + \nabla \cdot (\rho_k v_k v_k) = n_k q_k (E + v_k \times B) - \nabla p_k - \rho_k g + \sum_l \rho_k v_{kl} (v_k - v_l) + \sum_l S_{kl} v_l - L_k v_l
\]

- **M-I coupling**

\[
\Sigma_i \left(E_{cor} - E \right) = jD \\
j = en_i v_i - en_e v_e - q_d n_d v_d
\]
Collision frequency

\[\nu_{id} = n_d \left\{ 4\pi \left[\frac{q_d e}{4\pi \varepsilon_0 m_i \left(|v_i - v_d|^2 + v_{thi}^2 \right)} \right]^2 + \pi r_d^2 \right\} \sqrt{|v_i - v_d|^2 + v_{thi}^2} \]

\[\nu_{ed} = \frac{2\sqrt{2\pi}}{3} n_d \nu_{th} r_d^2 \left(\frac{e\phi_S}{k_B T_e} \right)^2 2 \ln \left(\frac{2k_B T_e}{e\phi_S r_d \lambda_D} \right) \]

\[\nu_{ei} = 54.5 \times 10^{-6} \frac{n_i}{T_i^{3/2}} \]

\[\nu_{in} = (2.6 \times 10^{-15}) (n_n + n_i) A^{-1/2} \]

\[\nu_{en} = (5.4 \times 10^{-16}) n_n T_e^{1/2} \]

\[\nu_{dn} = n_n \pi r_n^2 \sqrt{|v_d - v_n|^2 + v_{thd}^2} \]

\[\nu_{wp} = 1.27 \frac{\mu}{M_w} \frac{n_p}{T_i^{3/2}} \]

\[\nu_{kl} = \frac{m_i n_i}{m_k n_k} \nu_{lk} \]
Ion production

- Ion production rate

\[S_{k,l} = m_s k n_s n_l + m_k n_l \int_0^\infty \sigma_k F d\lambda \]

\[\int_0^\infty \sigma_k F d\lambda = 1.184 \times 10^{-8} \text{ [s}^{-1}] \]

<table>
<thead>
<tr>
<th>Reactions</th>
<th>Rates [m3 s$^{-1}$]</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{H}^+ + \text{H}_2\text{O} \rightarrow \text{H} + \text{H}_2\text{O}^+$</td>
<td>2.60×10^{-15}</td>
<td>Burger et al. [2007], Lindsay et al. [1997]</td>
</tr>
<tr>
<td>$\text{O}^+ + \text{H}_2\text{O} \rightarrow \text{O} + \text{H}_2\text{O}^+$</td>
<td>2.13×10^{-15}</td>
<td>Burger et al. [2007], Dressler et al. [2006]</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}^+ + \text{H}_2\text{O} \rightarrow \text{H}_2\text{O} + \text{H}_2\text{O}^+$</td>
<td>5.54×10^{-16}</td>
<td>Burger et al. [2007], Lishawa et al. [1997]</td>
</tr>
<tr>
<td>$\text{H}_2\text{O}^+ + \text{H}_2\text{O} \rightarrow \text{OH} + \text{H}_3\text{O}^+$</td>
<td>3.97×10^{-16}</td>
<td>Burger et al. [2007], Lishawa et al. [1997]</td>
</tr>
<tr>
<td>$\text{OH}^+ + \text{H}_2\text{O} \rightarrow \text{OH} + \text{H}_2\text{O}^+$</td>
<td>5.54×10^{-16}</td>
<td>Burger et al. [2007], Itikawa and Mason.[2005]</td>
</tr>
<tr>
<td>$\text{H}_2\text{O} + \text{e} \rightarrow \text{H}_2\text{O}^+ + 2\text{e}$</td>
<td>10^{-18} (total)</td>
<td>Burger et al. [2007], Itikawa and Mason.[2005]</td>
</tr>
<tr>
<td>$\text{H}_2\text{O} + \text{e} \rightarrow \text{OH}^+ + \text{H} + 2\text{e}$</td>
<td>10^{-18} (total)</td>
<td>Burger et al. [2007], Itikawa and Mason.[2005]</td>
</tr>
<tr>
<td>$\text{H}_2\text{O} + \text{e} \rightarrow \text{O}^+ + \text{H}_2 + 2\text{e}$</td>
<td>10^{-22}</td>
<td>Burger et al. [2007], Itikawa and Mason.[2005]</td>
</tr>
<tr>
<td>$\text{H}_2\text{O} + \text{e} \rightarrow \text{H}^+ + \text{OH} + 2\text{e}$</td>
<td>10^{-22}</td>
<td>Burger et al. [2007], Itikawa and Mason.[2005]</td>
</tr>
</tbody>
</table>

References:
Burger et al. [2007], Lindsay et al. [1997], Burger et al. [2007], Dressler et al. [2006], Burger et al. [2007], Lishawa et al. [1997], Burger et al. [2007], Itikawa and Mason.[2005], Burger et al. [2007], Itikawa and Mason.[2005], Burger et al. [2007], Itikawa and Mason.[2005], Burger et al. [2007], Itikawa and Mason.[2005].
Model settings

• We find a steady solution of ion velocity.
• 1 dimension (radial direction), 2 R_S to 10 R_S
• Grid size
 • 0.1 R_S
• Initial condition
 • Ion speed: Co-rotation speed
 • Dust speed: Keplerian speed
• Boundary condition
 • Inner boundary
 • Ion speed: Co-rotation speed
 • Dust speed: Keplerian speed
 • Outer boundary
 • Ion/dust speeds: Gradient of speeds is zero.
Density profile & Dust distribution

• Density profile
 • Electron: Persoon et al. (2005, 2009)

 \[n_w = n_e + \frac{q_d}{e} n_d - n_p \]

 \[n_w : n_p = 4 : 1 \]

• Thickness of dust distribution \(D \)
 • \(D = R_S \)
 • \(D = 2 \, R_S \)
 • \(D = 3 \, R_S \)
Other parameters

- Radius of dusts r_d: 100 nm
- Dust surface potential ϕ: -2 V
- Temperature: 2 eV
- Quantity of dust charge: $q_d = \beta 4 \pi \varepsilon_0 r_d \phi$
 - $\beta = 3.66$
- Ion mass: 18 m_p
- Dust mass: $4 \pi \rho r_d^3/3$
 - $\rho = 10^3$ kg/m3
- Ionospheric conductivity Σ_i: 1 S
Results

- Ion velocity is smaller when dust density is large.
- Ion velocity is also smaller when D is large.
- The inner magnetospheric total current weakens the electric field in Saturn’s ionosphere.
Results

- Ion velocity is smaller when dust density is large.
- Ion velocity is also smaller when D is large.
- The inner magnetospheric total current weakens the electric field in Saturn’s ionosphere.
Comparison with LP observation

- Ion speeds are 50-90% of the ideal co-rotation speed.
- The modeling is consistent with the LP observations when the dust density and/or the thickness of dust distribution is large.
 - $n_d > \sim 10^5 \text{ m}^{-3}$ and/or $D > 1 \text{ Rs}$
Summary

• Co-rotation deviation
 • Dust-plasma interaction
 • The inner magnetospheric total current along a magnetic field line weakens the electric field in Saturn’s ionosphere.
 • The ion speeds approach Keplerian due to the large total current when the ion and dust densities are large.
 • The dust–plasma interaction is significant when the thickness of the dust distribution is large and/or the density of ions and dusts is high.
 • $n_d \max > 10^5 \text{ m}^{-3}$
 • $D > 1 \text{ R}_S$

• Detail is shown by “Sakai et al., 2013, Dust-plasma interaction through magnetosphere-ionosphere coupling in Saturn’s inner magnetosphere, Planet. Space Sci., 75, 11–16, doi:10.1016/j.pss.2012.11.003”.