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Outline of a talk 

• Importance of complex system approach 

• Phase space reconstruction 

• Recurrence plot analysis 

• Test for determinism 

• Examples  



                      Complex approach 

• Motivation: Most ”real-life” systems are too complicated 
to be described directly by fundamental laws 

 
• Useful in systems with many degrees of freedom, in the 

absence of thermodynamic equilibrium (open,dissipative 
systems), in non-stationary, nonlinear systems 
 

• Morphology is more important than microscopic structure 
(universality) 

 
• Order emerges spontaneously (self-organisation) 
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                          Phase space 
 
• All possible states are represented (each possible state of the 

system corresponding to one unique point in the phase space). 
For mechanical systems, the phase space usually consists of all 
possible values of position and momentum variables. 

 
• Questions: 
o How trajectory evolves in the phase space: do trajectories  recur   
     (come back) to ”same part” of the phase space? 
 
o Does the recurrence have a period (periodic system)?  
 
o Do trajectories diverge exponentially (chaotic system) or with 
      a power law (stochastic system)? 
 
o Are trajectories parallel in the same box of the phase space 
      (deterministic system)? 
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                Phase space reconstruction 
 

• Consider a time series s(t) whose length is N 
 
• Embedding dimension is m and  τ  is a time 

delay 
   
• Time delay embedding for t=1, 2,…, N-(m-1)t  : 

 
 
 
 
 
 
τ  is the first zero in the autocorrelation function 
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)s,...,s,s,(sX 1)(mt2tttt ttt 


m-dimensional vector 
for time series s 



• For example, for  t=2 and m=3: 
 
 
 
 
 

                                     
                                          . 
                                          . 
                                          . 
• For the Lorenz system: 
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 

X


(t1)  s(t1),s(t3),s(t5) )

 

X


(t2)  s(t2),s(t4 ),s(t6) )

 

X


(t3)  s(t3),s(t5),s(t7) )

 

x(t),y(t),z(t)  x(t),x(t  t),x(t  2t) 



(example of Lorenz attractor) 

30.11.2011 7 

 

dx

dt
 a(y  x)

dy

dt
 xz  cx  y

dz

dt
 xy  bz

a=10, b=8/3, and c=28 

•Model of thermal  
 convection in the atmosphere 

•Fixed points: 

 

x*  y*  z*  0

x*  y*   b(c 1),z*  c 1

X(t) 
X(t+τ) 

X(t+2τ) 

X(t) 
Y(t) 

Z(t) 



• Recurrence plots (RPs) visually represent recurrences of the trajectories in 
the phase space. Suppose we have a trajectory                 of a system in the 
phase space.  

 

 

 

 
     

RP matrix R consists of zeros and ones; when trajectories recur: 

                                                  ,                        . 
 

Here, e is a threshold defined to obtain a fine structure of the  RP. 

εxx ji 


   Neighborhood around a point (A): L1 norm, (B): L2 norm, (C): L   -norm 

 



bzxy
dt

dz

yrxxz
dt

dy

x)σ(y
dt

dx







x 
y z 

 N
ii

x
1



1)ε(R ji, 



A-uniformly distributed white noise 
B-superposition of harmonic oscillators 
C-logistic map corrupted with linearly increasing term 
D-Brownian motion 

(A)-segment of the phase space  
trajectory of the Rössler attractor 
 
(B)-corresponding recurrence plot 



RP texture… 

• Homogenous RPs: stationary systems, where relaxation times 
are short in comparison with the time spanned by the RP 

• Periodic and quasiperiodic systems have RPs with diagonal 
lines 

• A drift can be seen in non-stationary systems, where RP pales 
away from the min diagonal 

• Abrupt changes in the dynamics as well as extreme events 
cause white areas or bands in the RP 



Recurrence quantification analysis (RQA) 

1.    Measures based on vertical lines and recurrent point density 

 

2. Measures based on diagonal lines : 

 

       Histogram P(e,l) is defined:   

  

 
 

                                                         ,                                              .                           
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RP for IMF Bz 

Storm on 6th of April, 2000 
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(two substorm onsets at 
5:01 and 21:26) 
a)whole day 
 
a)second substorm 

RP for AE index 



                    
Test for determinism 
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original 

randomized 

Lorenz system 

 

dx

dt
 f(x)

 

Vj 
1

n j

xk,j

xk,jk1

n j



 

Ln  Vj n j  n

n  =number of passes 
j 

(t)xb)(tx(t)x


 b=time spent in the box 



                    
Test for determinism (Kaplan and Glass, 1992) 
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original 

randomized 

Lorenz system 

 

dx

dt
 f(x) +w

 

Vj 
1

n j

xk,j

xk,jk1

n j



 

Ln  Vj n j  n

n  =number of passes 
j 

(t)xb)(tx(t)x


 b=time spent in the box 
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original 

randomized phases 

stochastic process 

When randomized L   vs. N is under the one for the original signal n 

 Process has low-dimensional and nonlinear component 

(Phases are randomized in Fourier space) 

Neither  
low-dimensional 
nor  
nonlinear  
component 



Examples….. 
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L   vs. N for 

SYM-H data averaged over 10 storms, 

for the period 3 days before/ after the storm’s main 

phase with a resolution of 12 hours 

n 

Storm  

Increased  
determinism 
during the storm 
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L    averaged over 10  
storms, for period 3 days  
before/ after the storm’s main 
phase, with a resolution of 12 
hours 

6 

* 

SYM-H 

IMF B z 

Flow speed V 

Linear stochastic process 
(fitted from SYM-H through  
linear square regression) 
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 

SYM  H*  0.77(SYM  H) 11.9 Pdyn

P     is Solar wind (dynamical) pressure 
dyn 

Exclude contribution from magnetopause current: 

* 
SYM-H 

SYM-H* 

sqrt (P      ) 
dyn 

SYM-H* has also 
increased  
determinism 
during storm 
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Determinism in AE index 

original 

randomized 

AE index has low-dimensional, nonlinear component 
(the same result is obtained for AL, AU and PC index) 
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AE index 
is more deterministic 
during substorms 

During substorm 

During all times 

Mean  L     over substorms   
(database from Frey & Mende, 2002) 

n   

The same is shown for AU 
and PC (polar cup) index 
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a) B 
 
b)  V 

z 

during substorms  

during all times 


