Solutions to final exam 221018 space Physics 1Fa 255

Coders $E_{\text {. }}$

T221018/5)
(a) Neglecting the thruster firings mean that the blue and the orange doffed segments of the bonjectory are Kepler orbits. The Δv provided by the Earth 1 Flyby can then be found from comparing the charge of the two orbits. The energy at ann point of au elliptic orbit can be written as

$$
\begin{equation*}
E=\frac{1}{2} m v^{2}-\frac{G M m}{r}=-\frac{G M m}{2 a} \tag{1}
\end{equation*}
$$

where $2 a$ is the major axis of the ellipte orbit, which we can meade in Figure 2. However, we find that we cannot measure with such accuracy as to differ between the senimajor axis of the Earth a_{0} aud of the blue traicedory segment a, so we put these to 1 AU . This is also the apporximate helicicultic distance of the Earth at the Ally. Denoting the s/c speed just before and after the fly by by v_{1} and v_{2}, respectively, we thus have that $v_{1} \approx$ the Earth orbital speed, so by use of the attached table we have

$$
\begin{equation*}
v_{1} \approx 29.8 \mathrm{dm} / \mathrm{s} \tag{2}
\end{equation*}
$$

From (1), we then get (with $\left.a_{1} \approx a_{0} \approx 1 A \cup\right)$

$$
\begin{align*}
& \frac{1}{2} v_{1}^{2}-\frac{C M}{a_{1}}=-\frac{G M}{2 a_{0}} \tag{3}\\
& \Rightarrow \frac{G M}{a_{0}}=v_{1}^{2} . \tag{4}
\end{align*}
$$

In Figure 2, Earth orbit and the blue segment have major axes of about $1,4 \mathrm{~mm}$ while the orange dotted segment has 58 mm . Denoting the semimajor axis of this segment by a_{2}
we thus have

$$
\begin{equation*}
a_{2} \approx \frac{58}{44} \cdot 1 \mathrm{AU}=\frac{29}{22} \mathrm{AU} . \tag{5}
\end{equation*}
$$

From (1) wee find the relations of the energies before and after the flyby:

$$
\begin{align*}
\Delta E & =E_{2}-E_{1}=\frac{1}{2} m\left(V_{2}^{2}-V_{1}^{2}\right)=-\frac{G M M}{2 a_{2}}+\frac{G m M}{2 a_{1}} \tag{6}\\
\Rightarrow v_{2}^{2} & =V_{1}^{2}+\frac{G M}{a_{1}}-\frac{G M}{a_{2}} \approx V_{1}^{2}+\frac{G M}{a_{0}}-\frac{G M}{\frac{29}{22} a_{0}}= \\
& =v_{1}^{2}+\frac{G M}{a_{0}}\left[1-\frac{22}{29}\right]=v_{1}^{2}+\frac{7}{29} \frac{G M}{a_{0}} \quad \text { (7) } \tag{7}
\end{align*}
$$

With (4) \& (2), we get

$$
\begin{align*}
v_{2}^{2} & \approx v_{1}^{2}\left(1+\frac{7}{29}\right)=\frac{36}{29} v_{1}^{2} \tag{8}\\
\Rightarrow \Delta v & =v_{2}-v_{1} \approx \sqrt{\frac{36}{29} v_{1}^{2}}-v_{1}= \\
& =v_{1}\left(\frac{6}{\sqrt{29}}-1\right)=29.8\left(\frac{6}{\sqrt{29}}-1\right) \mathrm{hm} / \mathrm{s}= \\
& \approx 3.4 \mathrm{~km} / \mathrm{s}
\end{align*}
$$

So, the Δu provided by the first Earth flyby y is approximately

$$
\Delta v \simeq 3.4 \mathrm{~cm} / \mathrm{s}
$$

(b) According to Figure 2, the Δv of the relecent orbit maneourres are $158 \mathrm{~m} / \mathrm{s}$ and $32 \mathrm{~m} / \mathrm{s}$, in total $190 \mathrm{~m} / \mathrm{s}$. This is about 6% of the Δv of Earth 1, so the error should of that order, i.e. small.
(c) Without this manoeuvre, Rosetth would just have crossed the orbit of the comet, close to tangentially. Figure 2 shows the semimajor axis of the orbital ellipse before the manoeuvre was larger for the comet than for Rosetta, so the comet had higher orbital energy and thus higher speed af any particular point. Rosetta thus had to accelerate.

T221018/8)
(a) For isubropic outgassing as described in the problem, we have a gas flow velocity

$$
\begin{equation*}
\bar{u}=u \hat{r} . \tag{1}
\end{equation*}
$$

Outside the nuclear, there are no sources or losses of gas, so the continuity equation is

$$
\begin{equation*}
\frac{\partial n}{\partial t}+\nabla \cdot(n \bar{u})=0 \tag{2}
\end{equation*}
$$

We assume steady state $(\partial / \partial t=0)$, so with (1) we ged

$$
\begin{align*}
0 & =\nabla \cdot(n u \hat{r})=\frac{u}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} n\right) \tag{3}\\
& \Rightarrow r^{2} n=g(\theta, \varphi) \tag{4}\\
& \Rightarrow n(r)=\frac{g(\theta, \varphi)}{r^{2}} \tag{15}
\end{align*}
$$

Where g is an arbitrary function of the angular coordinates θ and φ. For the case of isotropic outgassing $g=$ constant, but we can see that the $1 / 1^{2}$ dependence is retained in any given direction also for anisotropic ontgassing, as long as the velocity of the gas is strictly radial and there are no interactions between its particles.
(b)

The change of intensity of the EUV radiation in a thin layer $[r, r+d r]$ should be proportional to the inleusify Il) itself, to the number density of the gas $n(r)$ with which the EOV photoas can react, and to the thickness dr. Thus

$$
\begin{align*}
d I & =a n(r) I(r) d r \tag{5}\\
\Rightarrow \frac{d I}{I} & =a n d r \tag{6}
\end{align*}
$$

With (4) we get

$$
\begin{equation*}
\frac{d I}{I}=a \frac{g}{r^{2}} d r \tag{7}
\end{equation*}
$$

with intensity I_{0} for away $(r \rightarrow \infty)$, we have

$$
\begin{align*}
& \int_{I(r)}^{I_{0}} \frac{d I}{I}=a g \int_{r}^{\infty} \frac{d r}{r^{2}} \tag{8}\\
& {[\ln I]_{I(r)}^{I_{0}}=a g\left[-\frac{1}{r}\right]_{r}^{\infty} } \tag{9}\\
& \ln \frac{I(r)}{I_{0}}=-\frac{a g}{r} \tag{10}\\
\Rightarrow & I(r)=I_{0} \operatorname{ap}\left(-\frac{a g}{r}\right) \tag{10}
\end{align*}
$$

where a and g are construts.

