
PROBLEMS

For the course
Space Physics I

Uppsala University
Department of Astronomy and Space Physics

Version 1.2
Anders Eriksson
18 January 2004

2



	  



Contents
1 Plasmas, the sun and the solar wind 2

2 Magnetospheres and the motion of charged particles 6

3 Ionospheres and conductivity 11

4 Rockets and spacecraft 13

5 Miscellaneous 15

Revision history

1.0 2002-11-11 Initial version
1.1 2002-11-20 References to old books removed,

some corrections
1.2 2004-01-18 Some further corrections.

1



Problems marked with a star * are considered to be non-standard problems: do not
feel depressed if you do not manage to solve these at first (or even second or third) try.

1 Plasmas, the sun and the solar wind
1. Debye shielding. The Debye length is the shielding distance in a plasma, the

typical distance over which the influence of any single particle is shielded by
the adjustment of motion and position of other particles. A derivation of De-
bye shielding, considering the potential from a point charge, can be found in
Rönnmark’s Chapter 6. Assuming that the potential goes to zero at infinity, de-
rive similar expressions for the potential from

(a) a sphere of radius a at potential V

(b) an infinite plane at potential V

(c) * an infinite cylinder of radius a at potential V (involves modified Bessel
functions)

2. * Quasineutrality. Show that in a plasma at temperature T , the relative charge
imbalance |ni − ne|/(ni + ne) caused by thermal fluctuations (whose energy is
on the order of KT ) is on the order of (λD/L)2 or less, where L is the length
scale of the fluctuation.

3. Particle flux and the continuity equation.

(a) Convince yourself that the number of particles per unit time crossing an
area A, whose normal is at an angle θ to a flow with velocity v, must be
nvA cos θ.

(b) Show that the number of particles passing out from a volume V per unit
time must be

∮
∂V nv · dS, where ∂V is the boundary surface of V .

(c) By equating this particle loss to the negative of dN/dt, whereN is the total
number of particles in V , derive the continuity equation

∂n

∂t
+∇ · (nv) = 0.

4. Continuity equation.

(a) From Maxwell’s equations, derive the equation of continuity of electric
charge,

∂ρ

∂t
+∇ · j = 0.

(b) Show that this leads to that the change of chargeQ in a volume V is entirely
due to currents flowing through the boundary surface ∂V , i.e. that

dQ

dt
+

∮

∂V

j · dS = 0.
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5. Fluid equation of motion. For a neutral gas in a gravitational field (which was
the model from which we derived the existance and properties of the solar wind),
we have written the equation of motion as

ρm
dv

dt
= −∇p+ ρmg

where p is the pressure and g is the gravitational field strength (the same thing
as the ordinary g but with its direction specified to form a vector). Show that this
indeed can be seen as ”Newton’s second law per unit volume”, i.e. that the total
force on a volume V is the sum of the pressure on that volume, −

∮
∂V pdS, and

the gravitational force, mg.

6. Solar mass loss. From the intensity of solar electromagnetic radiation at Earth’s
orbit, 1370 W/m2, and the solar wind speed and density, typically 350 km/s and
5 cm−3 (also at Earth’s orbit), estimate the time scale for removing the solar
mass by conversion of mass to electromagnetic radiation in fusion reactions, and
by solar wind mass transport.

7. Solar wind. If the solar wind is assumed to have constant speed around 400
km/s, how long time does it take to reach Mercury, Earth, Mars, Jupiter, Saturn,
Neptune?

8. Solar prominence. A simple model of the magnetic field of a solar prominence
is

B = B0 (x̂ cos kx− ẑ sin kx) e−kz .

Find the equation for the field lines, and sketch a plot. What is the current distri-
bution j(r) required to maintain this magnetic field? Is this a phycically possible
prominence model in the sense that it does not require magnetic monopoles?

9. * Frozen-in magnetic field. Use the equation of motion for charged particle
species,

nm
dv

dt
= nq(E + v ×B)−∇(nKT ),

to motivate the conditions ∣∣∣∣
∂

∂t

∣∣∣∣� ωc

|∇| � 1/rg and
qvB

KT

for the validity of the frozen-in field condition E + v ×B = 0.

10. Solar wind electric field. Estimate the electric field (as seen by an observer in the
frame of the Earth) in the solar wind from the solar wind parameters tabulated
on page 92 in Kivelson-Russell.

11. The interplanetary magnetic field. Assume a spherically symmetric, stationary
(not varying with time, ∂/∂t = 0), radially expanding solar wind v(r) = v(r) r̂,
into which is frozen a stationary magnetic field B(r) from the sun.

(a) Consider the area element dS with normal direction along r̂. How will this
element depend on r as it flows with the radially expanding solar wind?

(b) How will the radial component of the frozen-in magnetic field Br depend
on r for any plasma element blowing with the solar wind?

(c) Consider some plasma element in the solar wind in the equatorial plane.
How will the ratioBφ/Br change with distance r for this plasma element?
Also calculate how Bφ depends on r.
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(d) How does the results you got here compare to the Parker spiral model de-
veloped in Section 4.3.2 in Kivelson-Russell?

12. Interplanetary magnetic field. If the typical angle of the IMF to the radial direc-
tion from the sun at 1 AU (Earth orbit) is 45◦, what is it at Saturn?

13. Solar wind and IMF. Assuming that the solar wind expands with constant ve-
locity and at constant temperature, and that the interplanetary magnetic field is
described by the expressions forBr andBφ in Section 4.3.2 of Kivelson-Russell,
how will the plasma beta (ratio of thermal to magnetic energy density) and the
ratio of kinetic to magnetic energy density change with r?

14. Solar wind and IMF. Figure 1 shows 10 minutes of solar wind electric and mag-
netic field data from one of ESAs four Cluster spacecraft. The coordinate system
is known as GSE (geocentric solar ecliptic), where x points to the sun, y is in the
ecliptic plane towards dusk (opposite to planetary motion).

(a) How does the direction of the magnetic field in this period compare to what
is expected from the Parker spiral?

(b) Assuming that the solar wind flows purely in the −x direction, i.e. radially
away from the sun, estimate the solar wind speed during this time interval.

Hint: What should the electric field be in the solar wind rest frame?
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Figure 1: Cluster electric and magnetic field data from the solar wind. E-field data
by the Swedish Institute of Space Physics, Uppsala; B-field data courtesy of Imperial
College of Science and Technology, London.

15. Comet tails. A comet is surrounded by a cloud of gas and dust, evaporated from
the comet body by the sunlight. As is the case in planetary atmospheres, this gas
is partly ionized, again by the solar radiation. Quite often, comets show two tails.
This is attributed to the different acceleration mechanisms operating on neutral
particles and ions/electrons.

(a) The particles in the neutral tail is accelerated in the direction away from
the sun mainly by the radiation pressure of the sunlight. For a comet at 1
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AU distance from the sun, estimate the force on an oxygen ion due to the
radiation pressure.

(b) Charged particles are also affected by electromagnetic effects. For a comet
at 1 AU, estimate the electromagnetic force on an oxygen ion. Compare to
what you got for the oxygen atom above.

Hints: The radiation pressure prad is related to the radiation energy flux Irad by
Irad = prad c. Use some table value to estimate the relevant size of an oxygen
atom. Remember that the plasma which is created by ionization of comet gases
initially has a speed very different from the solar wind – what consequence does
this have for the electric field? The initial speed of the comet plasma can be put

to zero in a sun-fixed reference system. Use some standard values for the solar
wind speed and the interplanetary magnetic field.

16. MHD forces. Show that when applied to a conductor of length L carrying a
current I perpendicular to a magnetic field B, the MHD force expression j ×B
results in a force BIL on the conductor.

17. MHD forces. Find the equation for the field lines of the field

B = B0(x̂ + 2xŷ).

What is the magnetic force density at the point (1,0)? What part of this force is
magnetic pressure, and what part is magnetic tension?

18. Pressure balance - sunspot. Sunspots are dark patches on the sun where the
plasma temperature is lower and the magnetic field intensity higher than in the
surroundings. If the temperature is 6000 K outside the sunspot and 4000 K
inside, the magnetic field is 0.3 T inside the sunspot and negligible outside, and
the density is 1019 cm−3 outside, what is the ratio between the densities inside
and outside the sunspot?
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2 Magnetospheres and the motion of charged par-
ticles

19. Pressure balance - magnetopause. The solar wind pressure is dominated by
the dynamic pressure ∼ nmv2. At a magnetopause, the solar wind pressure is
balanced by the pressure inside the magnetosphere. For Earth and Mercury, the
magnetic field, approximately dipolar, dominates the magnetospheric pressure.
For the solar wind at 1 AU, v and B are given by Kivelson-Russell in page 92,
and the strength of the terrestrial magnetic field on the ground at the equator is
30 µT. Mercury has a magnetic dipole moment of 3 · 1012 Tm3 and a radius
of 2,440 km. Assume that the solar wind speed is the same at Earth and at
Mercury. Estimate the standoff distances, in units of the planetary radii, to the
magnetopauses of Mercury and Earth.

20. Magnetic dipole field lines. Determine the field lines in a dipole magnetic field,
and find how the magnetic field intensity varies as a function of r along any
particular field line. What is the magnetic field intensity at an altitude of 3000
km for the magnetic field line which leaves the Earth at latitude 65◦? At what
distance does it cross the equatorial plane?

21. * Syncrotron radiation. An accelerated electric charge radiates electromagnetic
energy at a rate

P =
µ0q

2v̇2

6πc(1− v2/c2)2

where v̇ is the acceleration. A gyrating charge in a magnetic field will therefore
emit radiation, as the circular gyro motion implies that the particle is continously
accelerated. This is called syncrotron radiation. Consider a particle with v⊥ 6=
0, v‖ = 0 in a homogeneous magnetic field B. Derive an equation for how
the kinetic energy decreases due to the radiation. Find the half-life time for the
kinetic energy of electrons and ions in the terrestrial ionosphere (B ≈ 10µT)
and in the solar wind (B ≈ 10 nT). Estimate the total power radiated from
the terrestrial magnetosphere due to syncrotron radiation. Is this energy loss
important?

22. Magnetic moment. Show that the magnetic flux inside the gyroorbit of a charged
particle in a magnetic field is constant if the first adiabatic invariant is conserved.

23. E×B motion. A particle of mass m and charge e, initially at rest at the origin,
is subjected to constant fields E = Eŷ and B = Bẑ. Derive the orbit r(t) =
x(t)x̂+y(t)ŷ of the particle. Plot the motion in the x-y-plane. If done correctly,
you should get a curve known as a cycloid. What is the “wavelength” of this
curve?

24. Loss cone. Calculate the opening angle of the loss cone

(a) in the equatorial plane

(b) at 10000 km altitude (Viking satellite)

(c) at 1700 km altitude (Freja satellite)

for particles on a (dipolar) magnetic field line which reaches the ground at mag-
netic latitude 70◦.

25. Adiabatic motion. The bold spaceman Spiff, famous interplanetary explorer,
cruises leisurely with his spaceship at a point P in the magnetosphere of the
yet-to-be-discovered planet Zondarglash-B (see Figure 2). Hideously ugly and
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Figure 2: The tense situation when Spiff encounters the space monsters.

extraordinary evil space monsters in another space ship at a point Q at the same
magnetic field line as P try to kill Spiff by blasting him with a deadly ray of ion-
ized antimatter. The monsters, who did never pass their course in space physics,
act intuitively and fire along the line of sight from Q to P. The ion gyroradius can
be considered small compared to the scale length of inhomogeneities in the mag-
netic field. The magnetic field strength increases monotonically from Q down to
J (the planetary ionosphere). The battle may end in three ways:

(a) Triumph of the evil: Spiff is destroyed by the ion ray, monsters survive.

(b) Spiff as well as monsters are killed.
(c) The monsters are fried by the ion ray, while our hero Spiff survives to

continue his glorious career.

Explain why these cases arise. Deduce inequalities the angle θQ must satisfy
for each of these cases. In the drama described above, the actual magnetic field
values were BQ = 1 µT, BP = 9 µT, BJ = 100 µT, and θQ = 30◦. What was
the outcome of the ferocious battle?

26. * Bounce motion. Consider a particle trapped between two magnetic mirrors.
Show that

v‖(s) = v
√

1−B(s)/Bm

where v is the (constant) speed of the particle, s a coordinate along the magnetic
field line, and Bm is the magnetic field in the mirror points.

(a) Derive integral expressions for the bounce period, i.e., the time it takes for
the particle to go from one mirror to the other and back again.

(b) Write an integral expression for the distance 2 sb which the particle travels
along the field line between the mirror points, not including the gyromotion
(Hint: this is quite trivial, no calculation at all involved).

(c) Near the point where B is minimum, we can Taylor expand the distance in
(b) as

B(s) = B0 + as2

if s = 0 is the minimum point, B0 the magnetic field in this point, and
a is a constant. Show that particles which have close to 90◦ pitch angle
near the minimum point, and thus cannot travel far from this point, oscilate
harmonically along the field line according to

d2s

dt2
+ ω2

bs = 0
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Figure 3: Idealized geometry of Fermi acceleration of cosmic rays.

where the bounce (angular) frequency ωb may be written ωb = v‖0/sm.

(Hint: As the magnetic field is assumed to be constant in time, we have d2s/dt2 =
dv‖/dt = v‖dv‖/ds.)

27. Radiation belts. The Earth’s radiation belts contains magnetically trapped high
energy (MeV range) ions (and electrons, which we skip here as they are rela-
tivistic), encircling the Earth mainly due to the gradient drift (as opposed to low
energy (eV) particles, for which the corotation electric field dominates). Typi-
cal geocentric distance of the radiation belt is 2 RE for protons. Consider 5 MeV
protons with equatorial pitch angle close to 90◦. Calculate drift speed and orbital
period around the Earth, modelling the geomagnetic field as a dipole field.

28. Ring current. Let the geomagnetic field be represented by a dipole field. Con-
sider a plasma in the equatorial plane at 5 RE with density 10 cm−3, consisting
of 1 eV protons and 10 keV electrons with 90◦ pitch angle in the equatorial plane.
Calculate drift speeds, direction of the drift, and drift orbital period around the
Earth. Calculate the current density j for the ring current carried by these par-
ticles. If the cross-section area of the current is 1 RE × 1 RE, what is the total
current? Estimate the strength of the magnetic field from this ring current at the
center of the Earth. How is this magnetic field it directed - does it enhance or
decrease the geomagnetic field? Also calculate drift velocities and resulting cur-
rent density for the drift due to the gravitational force on the particles. How does
this compare to the magnetic gradient drift?

29. Fermi acceleration of cosmic rays. A proton in interstellar space is trapped be-
tween two magnetic mirrors (see Figure 3). The magnetic field in the mirror
points is Bm = 5B0, where B0 is the minimm field strength along the field line
between the mirrors. At t = 0, the distance between the mirrors is 1010 km, but
both are moving towards a point between them with a speed of 10 km/s. The
initital energy of the proton is 1 keV, and its pitch angle is 45◦. What pitch angle
must the proton have to slip out from the mirror configuration? What energy will
it have when slipping out? How long time will it take for it to reach this energy
and pitch angle?

30. Betatron acceleration of cosmic rays. Consider a proton which initially has an
energy of 1 keV and pitch angel 90◦ in an interstellar magnetic field of 10 pT.

(a) If the magnetic field is increased slowly (so that the first adiabatic invariant
is conserved) to 100 pT, what happens to the energy of the proton? If it
changes, why? What force does work on the particle?

(b) Assume that when the magnetic field has reached 100 pT, the proton ellas-
tically collides with another particle, so that its energy is conserved but the
pitch angle after the collission becomes 45◦. If the magnetic field strength
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decreases to its initial value 10 pT again after the collission, what will the
energy of the proton be?

(c) If the energy of the proton was changed in this procedure, from where
did it come or where did it go? Can both the particles (the proton and its
collission partner) gain energy?

Can you think of any other context in which the process could be important?

31. Relativistic motion. As a rule, relativistic effects become important when the ki-
netic energy (from non-relativistic theory) becomes comparable to the rest mass
of the particle. Calculate these energies for electrons and ions. Will relativistic
effects be important for radiation belt particles? Cosmic rays? Derive relativistic
expressions for the gyroradius and the cyclotron frequency.

32. Current sheets. Thin layers of current are found in many magnetospheric con-
texts, like the magnetopause current, the cross-tail current, or the field-aligned
Birkeland currents. The simplest case is the sheet that is infinite in the y and z
directions, has a thickness of 2a in the x direction, and carries a homogeneous
current of total strength I flowing along ẑ. Calculate the magnetic field from
such a sheet.

33. Tail current. In the magnetospheric tail, the magnetic field may be modelled as
homogeneous with a strength of 10 nT. The direction is towards the Earth above
the equatorial plane and away from the Earth below.

(a) Determine the strength and direction of the surface current (unit: A/m)
which flows across the tail.

(b) Describe the motion of 1 keV protons and electrons which at t = 0 are in
the equatorial plane with velocity pependicular to the equatorial plane and
to the magnetic field.

(c) Show that the motion of the particles represents a current in the same di-
rection as the surface current discussed above.

(d) Estimate the plasma density which is needed to carry all the surface current
if all particles have energy 1 keV and 90◦ pitch angle.

34. Magnetotail. Consider the tail of the magnetosphere to consist of two lobes
with oppositely directed magnetic field with strength 10 nT far away from the
equatorial plane. Assume that the current sheet between the lobes is not the zero
thickness layer considered in the previous problem, but has a thickness of 5000
km in which the current is homogeneously distributed. Calculate the current
density j and the variation of the magnetic field in this sheet, as well as the
magnetic force per unit volume (j×B). Show that j×B = −∇B2/(2µ0). The
magnetic force may thus be interpreted as the gradient of a pressure B2/(2µ0)
which varies in space. Which forces in the plasma may balance this force? What
does this imply for the plasma in the central plasma sheet (the region where the
cross-tail current flows)?

35. Substorms. In a substorm, the magnetic energy stored in the tail may be dissi-
pated within 10 minutes. Consider the tail in the previous problem. If it is a
cylinder of radius and length 10 RE, how much energy is stored in the tail mag-
netic field? If all this is dissipated in 10 minutes, what is the average power in
the substorm ?

36. Loads and generators in MHD circuits. In the ideal magnetohydrodynamic
(MHD) approximation, the plasma is described by the frozen-in condition E +
v ×B = 0 and the equation of motionmndv/dt = j×B. From the two MHD
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equations, show that the released electric energy per unit volume and time, j · E,
goes to kinetic energy (per unit volume). Regions in space where j ·E > 0 are
therefore “motor” areas where electric energy is converted to plasma motion, and
constitute a load on the circuit. Regions where j · E < 0 are “generators”, where
kinetic energy is converted to electromagnetic energy.
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3 Ionospheres and conductivity

37. * E region recombination. In an ionosphere consisting of NO+ ions and electrons
with density 1011 m−3 (Earth’s E region), find the typical lifetime of an NO+

ion by putting the source term (ionization) to zero. Assume that the loss term
is dissociative recombination NO+ + e− → N + O with reaction constant α =
3 · 10−13 m3/s. (Answer: 1/(αn) = 30 s.)

38. F region charge exchange. Assume that the plasma in the terrestrial F region
around 300 km altitude consists of O+ ions and electrons with number density
1012 m−3. In the same manner as above, estimate the typical lifetime of O+

ions by calculating the time at which the density as decreased to 1/e of its initial
value. Assume that the loss process is charge exchange O+ + N2 → NO+ + N
with reaction constant k = 10−18 m3/s. The density of molecular nitrogen may
be found from Figure 7.7 in Kivelson-Russell. (Answer: 1/(knN2) = 104 s.)

39. * Ionospheric equilibrium density. In a pure oxygen atmosphere of density
nO2 , photoionization creates O+ and O+

2 ionis at rates q1 and q2, respectively
(units: m−3s−1). These ions are lost in the reactions O+ + O2 → O+

2 + O
and O+

2 + e− → O + O with reaction constants k and α, respectively. Find
an expression for the electron number density at equilibrium. (Answer: ne =

q1
2knO2

+

√
q1+q2
α +

(
q1

2knO2

)2

.)

40. * Recombination. Consider what happens if the ionization in the oxygen iono-
sphere in the previous problem suddenly stops (q1 = q2 = 0 for t > 0). Derive
a differential equation for the variation of the electron number density with time.
(Answer: dne/dt+ αn2

e = αneq1/(knO2)e−knO2 t.)

41. * F region recombination. After the charge exchange process described in problen
38, F region electrons are lost by the dissociative recombination process NO+ +
e− → N + O, with reaction constant α = 3 · 10−13 m3/s. Estimate the character-
istic time for decay of the electron density.

42. Chapman theory. Show that the maximum electron number density, as predicted
by the Chapman theory, occurs at an altitude where the intensity of the solar ra-
diation (in UV, 10 - 100 nm) has decayed to 1/e of the intensity above the atmo-
sphere, and that the maximum electron density is nmax

e =
√
ajI0 cosφ/(aaarHe).

What is the maximum electron density if I0 = 3 mW/m2, φ = 45◦, H = 10
km, ar = 3 · 10−13 m3/s, aa = 10−21 m2, the ionization energyEi is 15 eV, and
1/6 of the absorbed energy goes to ionization. (Answer: 1.3 · 1011 m−3, typical
for the E region.)

43. * The conductivity tensor. As you know, there are currents flowing along the
magnetic field lines in the auroral regions. The Pedersen conductivity is low in
the magnetosphere, so the currents close in the ionosphere. Consider a planet
with an ionosphere and a magnetic field. The ionosphere is assumed to reach all
the way down to the (insulating) planetary surface. In this particular ionosphere,
the Pedersen and Hall conductivities vary with the altitude z above the ground as
σP = σ0 e

−z/a och σH = σ0 e
−z/b. The parallell conductivity can be assumed

infinite for all z. The magnetic field is homogeneous and vertical, and the planet
is very big, so that its surface may be assumed to be flat and infinite. Introduce
a Cartesian coordinate system (x, y, z) with the origin on the planetary surface
and ẑ pointing upwards. Due to processes in the planetary magnetosphere, field
aligned currents flow along the magnetic field as follows: One current flows
down along the field as a thin current sheet at x = c, and another current flows
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Figure 4: Two current sheets in an ionosphere. The current varies with altitude in the
sheets, and closes through currents flowing between the sheets (not shown).

upward in the sheet x = −c (Figure reffig:currsheets). Both current sheets have
infinite extent in the y and z directions, and the vertical component of the current
density vector may therefore be written as

jz(x, y, z) = K(z) [δ(x+ c)− δ(x− c)]

where K(z) is some function with K(∞) = K0. These two currents close in
the ionosphere via a perpendicular current density component jx(z) between the
current sheets.

(a) Calculate jx(z), K(z), and the electric field Ex between the sheets.

(b) Discuss the existence of currents and electric fields in the y direction.

(c) Calculate the power dissipated by the current per unit length in the y direc-
tion (the power dissipation per unit volume is j · E).

(d) Discuss the applicability of this model on real magnetosphere-ionosphere
systems.
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4 Rockets and spacecraft

44. Escape velocity. Calculate the radial speed a body at the Earth’s surface need
to acquire in order to overcome gravitation and escape into space. Must a real
rocket ever acquire this speed if it is to escape from the Earth?

45. Solar gravitation. Using table values for solar mass and size, find the accelera-
tion of gravity and the escape velocity at the solar surface.

46. Escape velocity. Calculate the radial speed a body at the Earth’s surface need
to acquire in order to overcome gravitation and escape into space. Must a real
rocket ever acquire this speed if it is to escape from the Earth?

47. Circular orbits. A satellite is orbiting the Earth with a period of 4 hours. What
is its altitude?

48. Total energy. The total energy of a spacecraft in a circular orbit is the sum of
its potential and kinetic energy. Derive the total energy of a satellite of mass m
orbiting the Earth at geocentric distance r.

49. Fuel budget. If the exhaust velocity of a one-stage rocket is 3 km/s, what is the
minimum fraction of the rockets mass that needs to be used for fuel if the rocket
is to reach a circular orbit at 250 km altitude?

50. Where to burn your fuel. Consider a spacecraft passing a planet, i.e. first falling
in toward the planet and then going away again, without changing direction in the
process (in reality, this is possible only if falling through the centre of the planet
– let us assume there is a convenient tunnel). If we have some fuel onboard
which we want to use for getting as much extra speed as possible when we have
left the planet, where should we fire the engine – when we are close to the planet,
or far away?

51. Planetary flybys. Close planetary flybys are often used by deep space probes
in order to gain momentum. For example, Rosetta will pass Mars once and
Earth three times on its nine-year journey to comet Churyomov-Gerasimenko,
and Cassini first went in to Venus even though its ultimate goal is Saturn. How
is it possible to gain momentum from a planetary flyby, even if one does not fire
any engine? Shouldn’t the spacecraft come out with just the same kinetic energy,
i.e. the same speed, after the flyby as before? How does this work?

52. Equilibrium temperatures. Calculate the equilibrium temperatures of the follow-
ing objects, far from the Earth but still at a distance of 1 AU from the Sun:

(a) A sphere covered with gold (α/ε = 5.50)
(b) A sphere covered with white paint (α/ε = 0.22)
(c) A cube, with one of its side facing the sun at right angles, covered with

white paint
(d) A thin plate, with one of its side facing the sun at right angles, covered with

white paint

53. Spacecraft heating needs. Consider a cubelike spacecraft, 2 m on each sides,
with one of its sides facing the sun at right angles. The surfaces are assumed to
be covered by a material with α = 0.35 and ε = 0.4.

(a) What is the equilibrium temperature of the spacecraft at Earth orbit?
(b) One may raise the temperature by using electric heaters. How much power

would be needed to raise the temperature of the spacecraft by 10◦C at Earth
orbit?
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(c) If the efficiency of the solar panels providing the electricity is 0.35, how
large area must they have to provide the power necessary for the heating in
(b)?

(d) Now put the same spacecraft out at Jupiter, 5.1 AU from the sun. Recalcu-
late equilibrium temperature, power needed for raising 10◦C and necessary
solar panel size for this environment.

54. Mission to the corona. To understand the fundamental question of coronal heat-
ing, we would very much like to do measurements, particularly of the magnetic
field and of the waves and particles in the plasma, inside the corona. The problem
of course is that a spacecraft going so close to the sun gets very hot. One way
of keeping cool would be to have a cone-shaped spacecraft with the top pointing
toward the sun. If the top angle of the cone is small, this gives a much larger
emission area (the mantle area plus the bottom area) than absorbtion area (equal
to the bottom area). If the spacecraft is to become no hotter than Tmax, what is
the needed top angle as function of distance to the sun and absorption ratio α/ε?
If Tmax = 77◦C for a conical spacecraft that should come as close as one solar
radius above the Sun’s surface and has a surface material with α/ε = 0.2, what
is the largest top angle allowed?

55. Plasma heat flux. The temperature in the solar wind is quite high, typically
perhaps 10 eV which is equivalent to 105 K. If all the thermal energy of the
solar wind particles hitting a spacecraft would transfer their energy completely
to thermal energy of the spacecraft body, what energy flux would this correspond
to, assuming typical values for solar wind density and velocity (5 cm−3 and
400 km/s, respectively)? How does this compare to the solar radiation flux of
1.4 kW/m2 at 1 AU?

56. Sailing on sunlight and on solar wind. The solar wind as well as the radiation
pressure of the sunlight give rise to antisunwardly directed forces on bodies in
space.

(a) Estimate these forces on a 1 m2 area in space. Which is the larger one?

(b) Sailing in space using the bigger of these forces has been discussed as a
means for going to the far reaches of the solar system. A technical problem
is that big lightweight sails are needed. Instead of using complicated me-
chanical sails, it has been suggested to create an artificial magnetosphere
around the spacecraft. Using a pressure balance argument, derive an ap-
proximate relation between the magnetic dipole moment on the spacecraft
and the resulting force on the spacecraft.

(c) Estimate the solar wind force on the Earth’s magnetosphere.

14



5 Miscellaneous

57. Large scale forces. Formally, the gravitational and electric forces has the same
dependence on distance (1/r2). Why is the gravitational force important for large
scales (planetary or galactic dynamics, for instance) but not the Coulomb force?
Find the electric charge on the sun and the Earth which would be necessary to get
an electric force as strong as the gravitational force between them. What electric
field would this charge give on the ground?
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Answers
1. (a) V a

r exp((a− r)/λD)

(b) V exp(−|x|/λD)

(c) V K0(r/λD)
K0(a/λD)

2. Hint: Thermal fluctuations have energy on the order ofKT or less, so the highest
potential energy that can be caused by a fluctuation is eΦ ∼ KT . Use Gauss’
law to find the relative charge imbalance.

3.

4.

5.

6. EM radiation: mass loss 4.3 · 109 kg/s =⇒ loss time 1.5 · 1013 years
Solar wind: mass loss 1.4 · 109 kg/s =⇒ loss time 4.4 · 1013 years
(assuming 75 % H and 25 % He in solar wind)

7. Approximate numbers: Mercury 40 hours, Earth 4 days, Mars 1 week, Jupiter
3 weeks, Saturn 6 weeks, Neptune 4 months

8. Field lines: z = − 1
k ln(C cos kx)

9.

10. About 3 mV/m

11. (a) As r2, by purely geometrical considerations. This element occupies a con-
stant solid angle as seen from the sun, i.e. it will always occupy the sam
fraction of the sphere of radius r centred on the sun.

(b) As 1/r2, because the flux through the area should be constant (frozen-in
condition), and we just found that the area goes like r2.

(c) Bφ/Br ∝ r/v(r). To find this, do a similar analysis as above for an area
element with its normal direction in the φ̂ direction: its sides will be rdφ
and dr(r) = v(r)dt, so that Bφ ∝ 1/(rv(r)).

(d) The treatment you just have done is general, while the Parker spiral essen-
tially ties a boundary condition (solar rotation and Br dominating at solar
surface) to the problem. There is thus no contradiction: you get the same
dependence ofBr andBφ as in the Parker spiral, but with an arbitrary value
of the ratio Br/Bφ.

12. 84◦, using the preceeding problem.

13.

14. The solar wind is a conducting medium (plasma), so the electric field in the solar
wind rest frame should be close to zero: E + v ×B = 0. This gives v from the
given E and B components, if we assume that the solar wind is flowing radially
outward, i.e. that v = (v, 0, 0) in the given coordinate system.

15. (a) About 7 · 10−26 N, using an oxygen atomic radius r = 70 pm. Remember
that the effective atomic area for the solar radiation pressure is πr2, not
4πr2, as the sun shines from a particular direction.

16.
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17. Field lines: y = C + x2

j×B(1, 0) =
2B2

0

µ0
(ŷ − 2 x̂)

The first term is due to magnetic tension, the second is due to magnetic pressure.

18. nin/nout ≈ 1.4

19. Earth∼ 8 RE, Mercury∼ 1.1 RM

(Mass conservation requires nSWvSWr
2 = constant, so if vSW is assumed the

same at Mercury and Earth, nSW must be a factor 1/0.392 higher at Mercury
than at Earth)

20. Field line equation: r = r0 cos2 θ

B(r) = B0

(
RP

r

)3√
4− 3 r/r0

(B0 = intensity of magnetic field on planetary surface at magnetic equator,
RP = planetary radius)
For the given field line, B(RE + 3000 km) = 13 µT, r0 = 5.6 RE

21.

22.

23. r(t) = E
ωcB

([ωct− sinωct]x̂ + [1− cosωct]ŷ)

“wavelength” = distance between points touching the x axis = 2πE
ωcB

24.

25. Our daring hero Spiff survives yet another attack, as you may find out by consid-
ering the adiabatic motion of ions starting at point Q: particles with 30◦ pitch an-
gle can only reach to a point where the magnetic field is a factor 1/ sin2 30◦ = 4
times stronger than at Q.

26. (a) Tb = 2
v

∫ s′m
sm

ds√
1−B(s)

Bm

27. Protons: v∇B = 300 km/s, Tdrift = 2 minutes

28. Gradient-curvature drift:
Electrons: 1.3 km/s eastward drift, 5 hour drift period
Ions: 13 cm/s westward drift, 50 year drift period
jgrad+curv = 2 nA/m2, I = 80 kA, B = 0.08 pT (adds to the geomagnetic field
on ground)
Gravitational drift:
Electrons: 0.23 mm/s westward drift
Ions: 43 cm/s eastward drift
jgrav = 0.6 pA/m2

jgrav/jgrad+curv ≈ 1/3000

29. sin2 α < 1/5, 2.5 keV, ∼ 8 years (using the 2nd adiabatic invariant)

30. (a) Energy increases to 10 keV due to emf associated with ∂B/∂t
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(b) 5.5 keV

(c) The emf does work on the particles. Both can gain energy.

31. 0.511 MeV (electrons), 938 MeV (protons)
ωc = eB

γm = ωnonrelativistic
c /γ

rg = v⊥
ωc

= p⊥
eB

32.

33.

34.

35.

36.

37. 1/(αn) = 30 s

38. 1/(knN2) = 104 s

39. ne = q1
2knO2

+

√
q1+q2
α +

(
q1

2knO2

)2

40. dne

dt + αn2
e = αneq1

knO2
exp(−knO2t)

41.

42. 1.3 · 1011 m−3

43. (a) Ex = −K0/(aσ0)
jx(z) = −K0

a exp(−z/a)
K(z) = K0 (1− exp(−z/a))

To find this, we first consider the electric field. As discussed in (b), there
is no reason to assume a y-component. As the parallell conductivity is
infinite, there can be no electric field in the z direction. Hence the electric
field is given by E(r) = Ex(x, z)x̂. The situation is static, so the E-field
must be curl-free, which gives ∂Ex

∂z = ∂Ez
∂x = 0: thus Ex cannot depend

on z. Current continuity (∇ · j = ∂ρ
∂t = 0) implies that jx cannot depend

on x between the current sheets, and as Ex = jx/σP (z), Ex must also be
independent of x. Thus Ex is a constant between the sheets.
Current continuity ∇ · j = 0 also gives that dK/dz = −jx(z) in our
case. Using jx = σPEx, we get K(z) = K0 +

∫ z
∞ jx(z) dz = K0 +

aσ0Ex exp(−z/a); the boundary conditionK(0) = 0 (no current can flow
into the planet) then gives Ex as above, which finally is used to express
jx(z) and K(z).

(b) This is a two-dimensional problem, symmetric in the y direction, so there
can be no dependence on the y coordinate. Neither is there any reason to
have an E-field in this direction, as there is nothing in the problem stating
the direction of this field: we thus assume Ey = 0. However, it would be
possible to solve the problem for a non-zero Ey, caused by some external
process, if such an electric field had been specified in the problem.
As for currents, the non-zero σH and Ex will give a Hall current. One
should note that the Cowling conductivity is not appliccable to this prob-
lem: it applies in a slab of enhanced conductivity, which is not the case
here (the plasma is assumed uniform also outside of the sheets).
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(c) Dissipated power per unit volume: j · E.
Integrate over x and z to get the requested dP

dy =
∫∞

0

∫ c
−c j · E dx dz =

2cK2
0/(aσ0).

(d) Current sheets somewhat like the pair given are indeed observed in the au-
roral regions. In reality, the plasma conductivity would have a more com-
plicated behaviour than in this simple exponential model, it would change
particularly in the upward current sheet due to increased ionization by au-
roral electrons, and the physics of the two sheets would be quite different,
but the problem can be considered a first-order model of closure of field-
aligned currents in the ionosphere.

44. vesc = 11.2 km/s. This is calculated from equating the needed kinetic energy of
the rocket to the change in gravitational potential energy between the Earth’s sur-
face and infinity,GmEmrocket/RE. As rockets actually are not burning out when
on the ground but are operational up to perhaps 200 km, where the gravitation
energy is slightly lower, a little lower speed will actually do, but the difference
this makes is quite small, only 0.2 km/s, so the value of 11.2 km/s is essentially
true for all launches.

45. g = 272 m/s2, vesc = 620 km/s

46.

47. h = r −RE = 6439 km

48. E = −GMm
2R

49. 92.5 %

50. Wherever a rocket is fired, it will provide the same ∆v, given by the rocket
equation (assuming short burn time – otherwise g matters). However, if the
velocity varies due to a gravitational field, most work will be done when the
velocity is high, because the work done is ∆W = mv∆v. Thus it is most
efficient firing the engine when v is as high as possible, i.e. close to the planet
(which, in this gedankenexperiment situation, means inside the tunnel).

51. Energy is conserved in the system defined by the common centre of mass of the
planet and the spacecraft. As the spacecraft is much smaller than the planet,
this is almost identically the rest frame of the planet. However, this does not
mean that energy is conserved in a reference frame centred on the sun: the planet
moves around the sun, so in this system the initial and final kinetic energies,
and hence speeds, of the spacecraft may differ. Physically, the spacecraft takes
some energy from the planets orbital motion around the sun, but of course the
difference to the planet motion is neglegible.

52. (a) 156◦C

(b) -81◦C

(c)

(d) -45◦C

The geometrical design and choice of surface material obviously is important for
the resulting temperature of a spacecraft.

53.
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54. sin θ/2 < β/(1 − β), where β = σT 4

α
ε I0

(
R

R2
0

)2 , R is the distance from the sun,

R0 = 1 AU is the Earth’s distance to the sun, and I0 = 1.4 kW/m2 is the solar
irradiation at Earth orbit. For the numbers given, this gives θ = 0.02◦. Obviously,
this will not be a practical design!

55. 4.8 · 10−6 W/m2, i.e. a factor 108 below the solar radiation energy flux. This
is why interactions with the surrounding medium usually are neglegible outside
planetary atmospheres.

56.

57.
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