Space Project Management

Chris Cully 8 April 2008 chris@irfu.se

(Based on 2007 lectures by Petrus Hyvönen)

Outline

- Project management tools
- ESA project phases
- General comments

Mission Objectives

The mission objectives define the goals and requirements of the mission

To investigate Venus atmosphere and its coupling to the solar wind to understand the development of Venus atmosphere and hydrosphere

Space Mission Analysis and Design Process

Typical Flow	Step		Section	
	Define Objectives	A. Define broad objectives and constraints B. Estimate quantitative mission needs and requirements	1.3 1.4	
	Characterize the Mission	 C. Define alternative mission concepts D. Define alternative mission architectures E. Identify system drivers for each F. Characterize mission concepts and architectures 	2.1 2.2 2.3 2.4	
	Evaluate the Mission	G. Identify driving requirements H. Evaluate mission utility I. Define mission concept (baseline)	3.1 3.2 3.3	
	Define Requirements	J. Define system requirements K. Allocate requirements to system elements	4.1 4.2-4.4	

- Note that requirement is defining what is to be done, and not how
- Requirements are quantitative measurements of how well objectives are met

Top level mission requiremets

Top Level Mission Requirements

Functional <u>Requirements</u>

Performance Coverage Responsiveness Secondary missions Operational <u>Requirements</u>

Mission Duration Availability Timeliness Survivability Data Distribution Data Content Data Form Data Form

Constraints

Cost Schedule Regulations Political limits Environment External Interfaces Development Constraints Spacecraft Disposal

Science objective vs Payload instrument matrix

	Payload Instrument											
Scientific Objective		Ion and electron spectrometer	Plasma wave/lightning detector	Langmuir probe	Magnetometer	ENA spectrometer	Mass-resolving driftmeter	Near IR imaging spectrometer	UV/visible photometer	Sub-satellites	Plasma sounder	Camera
Venus atmosphere – solar wind interaction	X	Х	X	Х	Х	Х	Х			Х		
Direct measurement of escaping ions	X	Х		Х		Х	Х			Х		
Water escape in the past	X	Х										
Aurora		Х	X	Х					Х			Х
Acceleration processes	Χ	Х	Х	Х	Х	Х	Х			Х		
Lightning			Х						Х			
Super-rotation	Χ	Х			Х		Х	Х				Х
Greenhouse effect								Х			Х	
Dawn-dusk asymmetry	Х	Х		Х		Х	Х			Х		
Meso-scale properties										Х		
Magnetic field					Х							
Volcanic activity	Χ	Х		Х			Χ	Х	Х			
Kinetic effects of the solar radiation	X	X					Х					

UNIVERSITET

Project Management

Strawman Payload

First payload that is used as a baseline in the design of the spacecraft

- Will be changed during a formal call
- Important to early get a design of the spacecraft and understand the requirements

Instruments	kg
Mass resolving ion spectrometer	5
Electron & ion spectrometer	2
Wave/lightning detector	2
Langmuir probe(s)	1
Magnetometer	0,5
ENA spectrometer	2,5
Driftmeter with mass resolution	3
Subsatellites	16
Subsatellite release/support system	3
Atmospheric instruments	
Near IR imaging spectrometer	10
UV/visible photometer	3
Radio science experiment	0
Total Mass:	48 kg

Project management tools

- Work breakdown structure
 - Total project work structured
- Gantt Chart
 - Work as a function of time with critical links
- Organizatinal chart
- Integrated models

Work package breakdown & Work package description

- On a large project, the work should be broken down into manageable subunits (work packages).
 - Tree structure ensures all work packages sum to 100% of task.
- A work package description:
 - is measurable and manageable in its scope
 - is allocated to only one manager
 - results in supply of products or documents
 - identifies all inputs and outputs, including interfaces with other tasks or WPs
 - clearly identifies planning constraints

Work package breakdown – example

Project Management

Work package description – example

PROJECT:	CHIP SCALE COOLERS		W.P. REF: 1400				
W.P. TITLE:	Development Planning		SHEET 1 OF 1				
CONTRACTOR:			ISSUE NO: 1				
MAJOR CONTST:	System Engineering						
START EVENT:	Kick-off	PLANNED DATE:	ISSUE DATE:				
END EVENT:	Final delivery	PLANNED DATE:	2006-09-21				
W.P. MANAGER:	Petrus Hyvönen						
OBJECTIVES: To establish and maintain development plans for the chip-scale cooler demonstrator							
INPUT REQUIRED TO START:							
 Kick-off or authorization to start 							
 Authorization to proceed with proposed objectives 							
1							

TASKS INCLUDED:

- Establish the development plan for chip-scale coolers
- Maintain and update the development in a controlled way through the development process
- Compilation of test and verification plan

OUTPUT:

- Detailed development plan for chip-scale coolers
- Contribution to design reviews and final report

Schedule

- As a minimum, the baseline schedule contains:
- key milestones
- descriptions of the activities
- start and finish dates of activities
- duration of activities
- identification of the critical path activities

Gantt Chart

Organizational Chart

- Clear and unambiguous definition of individual roles, responsibilities and authority
- Both internal and external to the organization

- Concurrent engineering is a method to make early concept designs
 - "Gather all in same room, have a boss, and make sure itall agrees in a semi-formal way"
- Tested by ESA, NASA and many universities with successful results at early project stages
- Integrated models are a central tool in this method
 - Collect and link calculations, values and other information
 - Enable all to access, modify and inspect
 - Uses COTS software Excel
 - Commercial Off The Shelf

Integrated Model Example

UNIVERSITET

Reusability

Tabs for different subsystems

Cost estimation

- Cost estimation needs to rely on good knowledge or good assumptions
 - Use previous missions and make a range of what seems reasonable
- Parametric model exists for common types of spacecraft
 - The applicability of these can be discussed
 - SMAD has a simple model for small satellite cost estimation

Project Management

Project phases – ESA project

PHASES

NOTE AR = Acceptance Review CDR = Critical Design Review FRR = Flight Readiness Review MDR = Mission Definition Review ORR = Operational Readiness Review PDR = Preliminary Design Review PRR = Preliminary Requirements Review QR = Qualification Review SRR = System Requirements Review WBS = Work Breakdown Structure A phase is a group of activities

- advances a project from one milestone to another
- often ended by a formal review that confirms if the work has been done follows the requirements

UPPSALA UNIVERSITE

Phase 0: Mission Analysis and Needs Identification

- (NASA terminology: pre-phase A)
- Identification and characterization
- Expected performance
- Assessment of operating constraints
 - in particular: physical and operational environment,

Cross-scale

- Identification of possible system concepts
- preliminary assessment of project management data (organization, costs, schedules)
- End result: specification of the mission concept
- At the end of phase 0, a Mission Definition Review (MDR) can take place
 - (NASA terminology: Mission Concept Review, MCR)

Phase A: Feasibility

Project Management

- Quantify and characterise critical elements for technical and economic suitability
 - explore various possible system concepts
 - compare these concepts against the needs
 - determine levels of uncertainty and risks
 - estimate the technical and industrial feasibility,
- Identify constraints:
 - costs, schedules, organisation, utilisation (operations, implementation, maintenance),
- At the end of the phase A, the Preliminary Requirements Review (PRR) is conducted
 - (NASA terminology: Mission Definition Review, MDR)

Phase B: Preliminary Definition (Project and Product)

- Select technical solutions for system concept selected in phase A
 - acquire a precise and coherent definition (performance levels, costs, schedules) at every level
- System Requirements Review (SRR)
 - Initial identification of 'Make or buy' alternatives
- Confirm feasibility of the recommended solution
- At the end of phase B:
 - Preliminary Design Review

Project Management

Phase C: Detailed Definition

- Detailed study of phase B solution
 - production of representative elements
 - detailed definition of system and components
- Allows a definitive 'make or buy' decision
- Allows confirmation of the test and qualification setup
- Allows preparation of phase E activities.
- At the end of this phase, the Critical Design Review (CDR) is conducted.

Phase D: Production/Ground Qualification Testing

Phase D is the end of the system development.

- Ground qualification testing verifies:
 - technical conformity of the components against the requirements (design qualification)
 - aptitude to be used operationally (operational qualification)
 - identification of the functional and operational margins.

Phase D ends with the Acceptance Review (AR)

Phases C and D are usually inseparable

Phase E: Utilisation

- Launch campaign, launch and in-flight acceptance of space elements
- Operation and maintenance of the system, feedback.
- Can be divided into two sub-phases:
 - E1: test and commissioning
 - E2: utilisation

This course

- Designing to a pre-phase 0 level
 - Don't need, e.g., detailed circuit diagram of electronics
 - Do need to demonstrate that the system
 <u>could</u> be built, and what it would be able to do if it were built

Get organized!

- Define roles and responsibilities
- Have a plan for how to meet deadlines
- Don't get too far ahead of yourselves

Project Management

This course

- "Phases"
 - Gathering questions
 - Meeting with experts: week of April 21
 - Preliminary strawman payload
 - Draft chapters May 16
 - Iterating
 - making into a consistent story
 - Making "sellable"

End of the lectures (Next: learning by doing)

Chris Cully chris@irfu.se